[1] Abid, W., Yafia, R., Alaoui, M. A. Aziz, Bouhafa, H., Abichou, A.:
Instability and pattern formation in three-species food chain model via Holling type II functional response on a circular domain. Int. J. Bifurcation Chaos Appl. Sci. Eng. 25 (2015), Article ID 1550092, 25 pages.
DOI 10.1142/S0218127415500923 |
MR 3357413 |
Zbl 1317.92059
[2] Antwi-Fordjour, K., Nkashama, M.:
Global existence of solutions of the Gierer-Meinhardt system with mixed boundary conditions. Appl. Math., Irvine 8 (2017), 857-867.
DOI 10.4236/am.2017.86067 |
MR 3286973
[8] Gierrer, A., Meinhardt, H.:
A theory of biological pattern formation. Biol. Cybern. 12 (1972), 30-39.
DOI 10.1007/bf00289234
[11] Justh, E. W., Krishnaprasad, P. S.:
A Lyapunov functional for the cubic nonlinearity activator-inhibitor model equation. Proceedings of the 37th IEEE Conference on Decision and Control, 1998 IEEE Control Systems Society, Piscataway (2002), 1404-1409.
DOI 10.1109/cdc.1998.758483
[12] Koch, A. J., Meinhardt, H.:
Biological pattern formation: from basic mechanisms to complex structures. Rev. Mod. Phys. 66 (1994), 1481-1507.
DOI 10.1103/revmodphys.66.1481
[14] Sun, G.-Q., Wang, C.-H., Wu, Z.-Y.:
Pattern dynamics of a Gierer-Meinhardt model with spatial effects. Nonlinear Dyn. 88 (2017), 1385-1396.
DOI 10.1007/s11071-016-3317-9
[17] Wei, J., Winter, M.:
Existence of spikes for the Gierer-Meinhardt system in one dimension. Mathematical Aspects of Pattern Formation in Biological Systems Applied Mathematical Sciences 189, Springer, London (2014), 13-39.
DOI 10.1007/978-1-4471-5526-3_2
[19] Wu, R., Shao, Y., Zhou, Y., Chen, L.:
Turing and Hopf bifurcation of Gierer-Meinhardt activator-substrate model. Electron. J. Differ. Equ. 2017 (2017), Paper No. 173, 19 pages.
MR 3690200 |
Zbl 1370.35050
[21] Yi, F., Gaffney, E. A., Seirin-Lee, S.:
The bifurcation analysis of Turing pattern formation induced by delay and diffusion in the Schnakenberg system. Discrete Contin. Dyn. Syst., Ser. B 22 (2017), 647-668.
DOI 10.3934/dcdsb.2017031 |
MR 3639134 |
Zbl 1360.35016