[4] Gingold, R. A., Monaghan, J. J.:
Smoothed particle hydrodynamics: theory and application to non-spherical stars. Mon. Not. R. Astron. Soc. 181 (1977), 375-389.
DOI 10.1093/mnras/181.3.375 |
Zbl 0421.76032
[5] Imoto, Y.:
Error estimates of generalized particle methods for the Poisson and heat equations. Ph.D. Thesis, Kyushu University Institutional Repository, Fukuoka (2016).
DOI 10.15017/1654668
[6] Imoto, Y., Tagami, D.:
A truncation error estimate of the interpolant of a particle method based on the Voronoi decomposition. JSIAM Lett. 8 (2016), 29-32.
DOI 10.14495/jsiaml.8.29 |
MR 3509656
[7] Imoto, Y., Tagami, D.:
Truncation error estimates of approximate differential operators of a particle method based on the Voronoi decomposition. JSIAM Lett. 9 (2017), 69-72.
DOI 10.14495/jsiaml.9.69 |
MR 3720058
[8] Ishijima, K., Kimura, M.:
Truncation error analysis of finite difference formulae in meshfree particle methods. Trans. Japan Soc. Ind. Appl. Math. 20 (2010), 165-182 Japanese.
DOI 10.11540/jsiamt.20.3_165
[9] Koshizuka, S., Oka, Y.:
Moving-particle semi-implicit method for fragmentation of incompressible fluid. Nuclear Sci. Eng. 123 (1996), 421-434.
DOI 10.13182/nse96-a24205
[10] Lucy, L. B.:
A numerical approach to the testing of the fission hypothesis. Astronom. J. 82 (1977), 1013-1024.
DOI 10.1086/112164
[12] Shao, S., Lo, E. Y. M.:
Incompressible SPH method for simulating Newtonian and nonNewtonian flows with a free surface. Adv. Water Resources 26 (2003), 787-800.
DOI 10.1016/s0309-1708(03)00030-7