[2] Béreš, M., Domesová, S.:
The stochastic Galerkin method for Darcy flow problem with log-normal random field coefficients. Adv. Electr. Electron. Eng. 15 (2017), 267-279.
DOI 10.15598/aeee.v15i2.2280
[3] Blaheta, R., Béreš, M., Domesová, S.:
A study of stochastic FEM method for porous media flow problem. Proc. Int. Conf. Applied Mathematics in Engineering and Reliability CRC Press (2016), 281-289.
DOI 10.1201/b21348-47
[4] Blaheta, R., Kohut, R., Kolcun, A., Souček, K., Staš, L., Vavro, L.:
Digital image based numerical micromechanics of geocomposites with application to chemical grouting. Int. J. Rock Mechanics and Mining Sciences 77 (2015), 77-88.
DOI 10.1016/j.ijrmms.2015.03.012
[8] Domesová, S., Béreš, M.:
Inverse problem solution using Bayesian approach with application to Darcy flow material parameters estimation. Adv. Electr. Electron. Eng. 15 (2017), 258-266.
DOI 10.15598/aeee.v15i2.2236
[9] Domesová, S., Béreš, M.:
A Bayesian approach to the identification problem with given material interfaces in the Darcy flow. Int. Conf. High Performance Computing in Science and Engineering, 2017 T. Kozubek et al. Springer International Publishing, Cham (2018), 203-216.
DOI 10.1007/978-3-319-97136-0_15
[10] Foreman-Mackey, D., Hogg, D. W., Lang, D., Goodman, J.:
emcee: The MCMC hammer. Publ. Astron. Soc. Pacific 125 (2013), 306-312.
DOI 10.1086/670067
[16] Pultarová, I.:
Hierarchical preconditioning for the stochastic Galerkin method: Upper bounds to the strengthened CBS constants. Comput. Math. Appl. 71 (2016), 949-964.
DOI 10.1016/j.camwa.2016.01.006 |
MR 3461271
[19] Sokal, A.:
Monte Carlo methods in statistical mechanics: Foundations and new algorithms. Functional Integration: Basics and Applications, 1996 C. DeWitt-Morette et al. NATO ASI Series. Series B. Physics. 361, Plenum Press, New York (1997), 131-192.
DOI 10.1007/978-1-4899-0319-8_6 |
MR 1477456 |
Zbl 0890.65006