Previous |  Up |  Next

Article

Keywords:
Boolean algebra; exhaustive submeasure; sequential topology; uniformly Fréchet topology
Summary:
A Boolean algebra carries a strictly positive exhaustive submeasure if and only if it has a sequential topology that is uniformly Fréchet.
References:
[1] Balcar B., Główczyński W., Jech T.: The sequential topology on complete Boolean algebras. Fund. Math. 155 (1998), no. 1, 59–78. MR 1487988
[2] Balcar B., Franek F., Hruška J.: Exhaustive zero-convergence structures on Boolean algebras. Acta Univ. Carolin. Math. Phys. 40 (1999), no. 2, 27–41. MR 1751539
[3] Balcar B., Jech T., Pazák T.: Complete ccc Boolean algebras, the order sequential topology, and a problem of von Neumann. Bull. London Math. Soc. 37 (2005), no. 6, 885–898. DOI 10.1112/S0024609305004807 | MR 2186722
[4] Balcar B., Jech T.: Weak distributivity, a problem of von Neumann and the mystery of measurability. Bull. Symbolic Logic 12 (2006), no. 2, 241–266. DOI 10.2178/bsl/1146620061 | MR 2223923 | Zbl 1120.03028
[5] Balcar B., Jech T.: Contributions to the theory of weakly distributive complete Boolean algebras. Andrzej Mostowski and foundational studies, IOS, Amsterdam, 2008, pages 144–150. MR 2422684
[6] Fremlin D. H.: Measure Algebras. Handbook of Boolean Algebras, 3, North-Holland Publishing, Amsterdam, 1989. MR 0991611
[7] Gaifman H.: Concerning measures on Boolean algebras. Pacific J. Math. 14 (1964), 61–73. DOI 10.2140/pjm.1964.14.61 | MR 0161952 | Zbl 0127.02306
[8] Horn A., Tarski A.: Measures in Boolean algebras. Trans. Amer. Math. Soc. 64 (1948), 467–497. DOI 10.1090/S0002-9947-1948-0028922-8 | MR 0028922 | Zbl 0035.03001
[9] Jech T.: Non-provability of Souslin's hypothesis. Comment. Math. Univ. Carolinae 8 (1967), no. 2, 291–305. MR 0215729
[10] Jech T.: Algebraic characterizations of measure algebras. Proc. Amer. Math. Soc. 136 (2008), no. 4, 1285–1294. DOI 10.1090/S0002-9939-07-09184-8 | MR 2367102
[11] Jech T.: Measures on Boolean algebras. Fund. Math. 239 (2017), no. 2, 177–183. DOI 10.4064/fm352-1-2017 | MR 3681586
[12] Kalton N.: The Maharam Problem. Publ. Math. Univ. Pierre et Marie Curie, 94, Univ. Paris VI, Paris, 1989. MR 1107322
[13] Kalton N. J., Roberts J. W.: Uniformly exhaustive submeasures and nearly additive set functions. Trans. Amer. Math. Soc. 278 (1983), 803–816. DOI 10.1090/S0002-9947-1983-0701524-4 | MR 0701524
[14] Kantorovič L. V., Vulih B. Z., Pinsker A. G.: Functional Analysis in Partially Ordered Spaces. Gosudarstv. Izdat. Tehn.-Teor. Lit., Moskva, 1950 (Russian). MR 0038006
[15] Kelley J. L.: Measures on Boolean algebras. Pacific J. Math. 9 (1959), 1165–1177. DOI 10.2140/pjm.1959.9.1165 | MR 0108570
[16] Maharam D.: An algebraic characterization of measure algebras. Ann. of Math. (2) 48 (1947), 154–167. DOI 10.2307/1969222 | MR 0018718
[17] Mauldin D., ed.: The Scottish Book. Birkhäuser, Boston, 1981. MR 0666400
[18] Monk J. D., Bonnet R., eds.: Handbook of Boolean algebras. North-Holland Publishing, Amsterdam, 1989. MR 0991601
[19] Solovay R. M., Tennenbaum S.: Iterated Cohen extensions and Souslin's problem. Ann. of Math. (2) 94 (1971), 201–245. DOI 10.2307/1970860 | MR 0294139
[20] Suslin M.: Problème 3. Fund. Math. 1 (1920), 223. DOI 10.4064/fm-1-1-223-224
[21] Talagrand M.: A simple example of pathological submeasure. Math. Ann. 252 (1979/80), no. 2, 97–102. DOI 10.1007/BF01420116 | MR 0593624
[22] Talagrand M.: Maharam's problem. Ann. of Math. (2) 168 (2008), no. 3, 981–1009. DOI 10.4007/annals.2008.168.981 | MR 2456888 | Zbl 1185.28002
[23] Tennenbaum S.: Souslin's problem. Proc. Nat. Acad. Sci. U.S.A. 59 (1968), 60–63. DOI 10.1073/pnas.59.1.60 | MR 0224456
[24] Todorčević S.: A dichotomy for P-ideals of countable sets. Fund. Math. 166 (2000), no. 3, 251–267. MR 1809418
[25] Todorcevic S.: A problem of von Neumann and Maharam about algebras supporting continuous submeasures. Fund. Math. 183 (2004), no. 2, 169–183. DOI 10.4064/fm183-2-7 | MR 2127965 | Zbl 1071.28004
Partner of
EuDML logo