Previous |  Up |  Next

Article

Keywords:
Boolean control network; reconstructibility; semi-tensor product of matrices; weighted pair graph; finite automaton; formal language
Summary:
This paper deals with the reconstructibility of Boolean control networks (BCNs) with time delays in states. First, a survey on the semi-tensor product, weighted pair graph, constructed forest and finite automata is given. Second, by using the weighted pair graph, constructed forest and finite automata, an algorithm is designed to judge whether a Boolean control network with time delays in states is reconstructable or not under a mild assumption. Third, an algorithm is proposed to determine the current state. Finally, an illustrative example is given to show the effectiveness of the proposed method.
References:
[1] Akutsu, T., Hayashida, M., Ching, W., Ng, M. K.: Control of Boolean networks: Hardness results and algorithms for tree structured networks. J. Theoret. Biology 244 (2007), 670-679. DOI 10.1016/j.jtbi.2006.09.023 | MR 2306355
[2] Bolotin, A.: Constructibility of the universal wave function. Foundat. Physics 46 (2016), 1-16. DOI 10.1007/s10701-016-0018-7 | MR 3544893
[3] Cheng, D.: On semi-tensor product of matrices and its applications. Acta Math. Appl. Sinica 19 (2003), 219-228. DOI 10.1007/s10255-003-0097-z | MR 2011484
[4] Cheng, D.: Input-state approach to Boolean networks. IEEE Trans. Neural Networks. 20 (2009), 512-521. DOI 10.1109/tnn.2008.2011359
[5] Cheng, D., Qi, H.: A linear representation of dynamics of Boolean networks. IEEE Trans. Automat. Control 55 (2010), 2251-2258. DOI 10.1109/tac.2010.2043294 | MR 2742217
[6] Cheng, D., Qi, H., Li, Z.: Realization of Boolean control networks. Automatica 46 (2010), 62-69. DOI 10.1016/j.automatica.2009.10.036 | MR 2777196
[7] Cheng, D., Qi, H., Li, Z.: Controllability and Observability of Boolean Control Networks. Springer-Verlag, London 2011.
[8] Cheng, D., Qi, H., Li, Z.: Analysis and Control of Boolean Networks. Springer-Verlag, London 2011. MR 2761796
[9] al., C. Farrow et: Scalar equations for synchronous Boolean networks with biological applications. IEEE Trans. Neural Networks 15 (2004), 348-354. DOI 10.1109/tnn.2004.824262
[10] Fornasini, E., Valcher, M. E.: Observability, reconstructibility and state observers of Boolean control networks. IEEE Trans. Automat. Control 58 (2013), 1390-1401. DOI 10.1109/tac.2012.2231592 | MR 3065124
[11] Fornasini, E., Valcher, M. E.: Fault detection analysis of Boolean control networks. IEEE Trans. Automat. Control 60 (2015), 2734-2739. DOI 10.1109/tac.2015.2396646 | MR 3405989
[12] Haitao, L. I., Zhao, G., Meng, M., Feng, J.: A survey on applications of semi-tensor product method in engineering. Science China (Inform. Sci.) 61 (2018), 1, 010202. DOI 10.1007/s11432-017-9238-1 | MR 3737404
[13] Han, M., Liu, Y., Tu, Y.: Controllability of Boolean control networks with time delays both in states and inputs. Neurocomputing 129 (2014), 467-475. DOI 10.1016/j.neucom.2013.09.012
[14] Ideker, T., Galitski, T., Hood, L.: A new approach to decoding life: systems biology. Ann. Rev. Genomics Hum. Genet. 2 (2001), 343-372. DOI 10.1146/annurev.genom.2.1.343
[15] Kari, J.: A Lecture Note on Automata and Formal Languages. http://users.utu.fi/jkari/automata/, 2016.
[16] Kauffman, S. A.: Metabolic stability and epigenesis in randomly constructed genetic nets. J. Theoret. Biology 22 (1969), 437-467. DOI 10.1016/0022-5193(69)90015-0 | MR 2436652
[17] Khalil, H. K.: Nonlinear Systems. MacMillan, New York 1992. MR 1201326 | Zbl 1194.93083
[18] Li, F., Sun, J., Wu, Q.: Observability of Boolean control networks with state time delays. IEEE Trans. Neural Networks 22 (2011), 948-954. DOI 10.1109/tnn.2011.2126594
[19] Li, F., Sun, J., Wu, Q.: Observability of Boolean control networks with state time delays. IEEE Trans. Neural Networks 22 (2011), 948-954. DOI 10.1109/tnn.2011.2126594
[20] Lu, J., Li, H., Liu, Y., Li, F.: Survey on semi-tensor product method with its applications in logical networks and other finite-valued systems. IET Control Theory Appl. 11 (2017) 13, 2040-2047. DOI 10.1049/iet-cta.2016.1659 | MR 3727046
[21] Sui, H.: Regulation of Cellular states in mammalian cells from a genomewide view. In: Gene Regulations and Metabolism - Postgenomic Computational Approaches (J. Collado-Vides, ed.), MIT Press, MA 2002, pp. 181-220.
[22] Thomasian, A.: Reconstruct versus read-modify writes in RAID. Inform. Process. Lett. 93 (2005), 163-168. DOI 10.1016/j.ipl.2004.10.009 | MR 2110605
[23] Valmari, A.: On constructibility and unconstructibility of LTS operators from other LTS operators. Acta Inform. 52 (2015), 207-234. DOI 10.1007/s00236-015-0217-2 | MR 3323586
[24] Zhang, K., Zhang, L.: Observability of Boolean control networks: a unified approach based on the theories of finite automata. IEEE Trans. Automat. Control 61 (2015), 6854-6861. MR 3545104
[25] Zhang, L., Zhang, K.: Controllability and observability of Boolean control networks with time-variant delays in states. IEEE Trans. Neural Networks Learning Syst. 24 (2013), 1478-1484. DOI 10.1109/tnnls.2013.2246187 | MR 3110659
[26] Zhang, L., Zhang, K.: Controllability of time-variant Boolean control networks and its application to Boolean control networks with finite memories. Science China (Inform. Sci.) 56 (2013), 1-12. DOI 10.1007/s11432-012-4651-2 | MR 3110659
[27] Zhang, K., Zhang, L.: Controllability of probabilistic Boolean control networks with time-variant delays in states. Science China (Inform. Sci.) 59 (2016), 092204:1-092204:10. DOI 10.1007/s11432-012-4651-2 | MR 3544105
[28] Zhang, K., Zhang, L., Su, R.: A weighted pair graph representation for reconstructibility of Boolean control networks. SIAM J. Control Optim. 54 (2016), 3040-3060. DOI 10.1137/140991285 | MR 3573305
[29] Zhao, Y., Qi, H., Cheng, D.: Input-state incidence matrix of Boolean control networks and its applications. Systems Control Lett. 59 (2010), 767-774. DOI 10.1016/j.sysconle.2010.09.002 | MR 2779787
Partner of
EuDML logo