[1] Akutsu, T., Hayashida, M., Ching, W., Ng, M. K.:
Control of Boolean networks: Hardness results and algorithms for tree structured networks. J. Theoret. Biology 244 (2007), 670-679.
DOI 10.1016/j.jtbi.2006.09.023 |
MR 2306355
[7] Cheng, D., Qi, H., Li, Z.: Controllability and Observability of Boolean Control Networks. Springer-Verlag, London 2011.
[8] Cheng, D., Qi, H., Li, Z.:
Analysis and Control of Boolean Networks. Springer-Verlag, London 2011.
MR 2761796
[9] al., C. Farrow et:
Scalar equations for synchronous Boolean networks with biological applications. IEEE Trans. Neural Networks 15 (2004), 348-354.
DOI 10.1109/tnn.2004.824262
[10] Fornasini, E., Valcher, M. E.:
Observability, reconstructibility and state observers of Boolean control networks. IEEE Trans. Automat. Control 58 (2013), 1390-1401.
DOI 10.1109/tac.2012.2231592 |
MR 3065124
[12] Haitao, L. I., Zhao, G., Meng, M., Feng, J.:
A survey on applications of semi-tensor product method in engineering. Science China (Inform. Sci.) 61 (2018), 1, 010202.
DOI 10.1007/s11432-017-9238-1 |
MR 3737404
[13] Han, M., Liu, Y., Tu, Y.:
Controllability of Boolean control networks with time delays both in states and inputs. Neurocomputing 129 (2014), 467-475.
DOI 10.1016/j.neucom.2013.09.012
[14] Ideker, T., Galitski, T., Hood, L.:
A new approach to decoding life: systems biology. Ann. Rev. Genomics Hum. Genet. 2 (2001), 343-372.
DOI 10.1146/annurev.genom.2.1.343
[18] Li, F., Sun, J., Wu, Q.:
Observability of Boolean control networks with state time delays. IEEE Trans. Neural Networks 22 (2011), 948-954.
DOI 10.1109/tnn.2011.2126594
[19] Li, F., Sun, J., Wu, Q.:
Observability of Boolean control networks with state time delays. IEEE Trans. Neural Networks 22 (2011), 948-954.
DOI 10.1109/tnn.2011.2126594
[20] Lu, J., Li, H., Liu, Y., Li, F.:
Survey on semi-tensor product method with its applications in logical networks and other finite-valued systems. IET Control Theory Appl. 11 (2017) 13, 2040-2047.
DOI 10.1049/iet-cta.2016.1659 |
MR 3727046
[21] Sui, H.: Regulation of Cellular states in mammalian cells from a genomewide view. In: Gene Regulations and Metabolism - Postgenomic Computational Approaches (J. Collado-Vides, ed.), MIT Press, MA 2002, pp. 181-220.
[24] Zhang, K., Zhang, L.:
Observability of Boolean control networks: a unified approach based on the theories of finite automata. IEEE Trans. Automat. Control 61 (2015), 6854-6861.
MR 3545104
[25] Zhang, L., Zhang, K.:
Controllability and observability of Boolean control networks with time-variant delays in states. IEEE Trans. Neural Networks Learning Syst. 24 (2013), 1478-1484.
DOI 10.1109/tnnls.2013.2246187 |
MR 3110659
[26] Zhang, L., Zhang, K.:
Controllability of time-variant Boolean control networks and its application to Boolean control networks with finite memories. Science China (Inform. Sci.) 56 (2013), 1-12.
DOI 10.1007/s11432-012-4651-2 |
MR 3110659
[27] Zhang, K., Zhang, L.:
Controllability of probabilistic Boolean control networks with time-variant delays in states. Science China (Inform. Sci.) 59 (2016), 092204:1-092204:10.
DOI 10.1007/s11432-012-4651-2 |
MR 3544105
[28] Zhang, K., Zhang, L., Su, R.:
A weighted pair graph representation for reconstructibility of Boolean control networks. SIAM J. Control Optim. 54 (2016), 3040-3060.
DOI 10.1137/140991285 |
MR 3573305