[3] Boccaletti, S., Latora, V., Moreno, Y., Chavez, M., Hwang, D. U.:
Complex networks: Structure and dynamics. Phys. Rep. 424 (2006), 4, 175-308.
DOI 10.1016/j.physrep.2005.10.009 |
MR 2193621
[5] Chen, G., Wang, X., Li, X.: Fundamentals of Complex Networks: Models, Structures and Dynamics. John Wiley and Sons, Singapore 2014.
[6] Chen, T., Liu, X., Lu, W.:
Pinning complex networks by a single controller. IEEE Trans. Circuits Systems I: Regular Papers 54 (2007), 6, 1317-1326
DOI 10.1109/TCSI.2007.895383 |
MR 2370589
[7] Drakunov, S., Izosimov, D., Lukyanov, A., Utkin, V. A., Utkin, V. I.:
The block control principle. 1. Automat. Remote Control 51 (1990), 5, 601-608.
MR 1071018
[8] Emelyanov, S. V.:
Variable Structure Control Systems. Nouka, Moscow 1967.
MR 0243850
[9] Erdos, P., Rényi, A.:
On the evolution of random graphs. Inst. Math. Hungar. Acad. Sci. 5 (1960), 1, 17-60.
MR 0125031
[10] Hu, G., Qu, Z.:
Controlling spatiotemporal chaos in coupled map lattice systems. Phys. Rev. Lett. 72 (1994), 1, 68.
DOI 10.1103/physrevlett.72.68
[11] Guldner, J., Utkin, V. I.:
Tracking the gradient of artificial potential fields: Sliding mode control for mobile robots. Int. J. Control 63 (1996), 3, 417-432.
DOI 10.1080/00207179608921850 |
MR 1650715
[12] Guldner, J., Utkin, V. I.: The chattering problem in sliding mode systems. In: 14th Intenational Symposium of Mathematical Theory of Networks and Systems, (MTNS), Perpignan 2000.
[13] Khalil, H. K.: Noninear Systems. Prentice-Hall, New Jersey 2002.
[14] Khanzadeh, A., Pourgholi, M.:
Fixed-time sliding mode controller design for synchronization of complex dynamical networks. Nonlinear Dynamics 88 (2017), 4, 2637-2649.
DOI 10.1007/s11071-017-3400-x |
MR 3656544
[15] Krstic, M., Kanellakopoulos, I., Kokotovic, P. V.: Nonlinear and Adaptive Control Design. Wiley, 1995.
[17] Li, X., Chen, G.:
Synchronization and desynchronization of complex dynamical networks: an engineering viewpoint. IEEE Trans. Circuits and Systems I: Fundamental Theory Appl. 50 (2003), 11, 1381-1390.
DOI 10.1109/tcsi.2003.818611 |
MR 2024565
[18] Li, X., Wang, X., Chen, G.:
Pinning a complex dynamical network to its equilibrium. IEEE Trans. Circuits Systems I: Regular Papers 51 (2004), 10, 2074-2087.
DOI 10.1109/tcsi.2004.835655 |
MR 2096915
[20] Pourmahmood, M., Khanmohammadi, S., Alizadeh, G.:
Finite-time synchronization of two different chaotic systems with unknown parameters via sliding mode technique. Appl. Math. Modell. 35 (2011), 3080-3091.
DOI 10.1016/j.apm.2010.12.020 |
MR 2776263
[21] Roy, R., Murphy, T., Maier, T., Gills, Z., Hunt, E.:
Dynamical control of a chaotic laser: Experimental stabilization of a globally coupled system. Phys. Rev. Lett. 68 (1992), 9, 1259-1262.
DOI 10.1103/physrevlett.68.1259
[22] Sanchez, E. N., Rodriguez, D. I.:
Inverse optimal pinning control for complex networks of chaotic systems. Int. Bifurcation Chaos 25, (2015), 02, 1550031.
DOI 10.1142/s0218127415500315 |
MR 3316325
[24] Sun, J., Shen, Y., Wang, X., Chen, J.:
Finite-time combination-combination synchronization of four different chaotic systems with unknown parameters via sliding mode control. Nonlinear Dynamics 76 (2014), 1, 383-397.
DOI 10.1007/s11071-013-1133-z |
MR 3189178
[25] Su, H., Xiaofan, W.:
Pinning Control of Complex Networked Systems: Synchronization, Consensus and Flocking of Networked Systems via Pinning. Springer-Verlag, Berlin 2013.
MR 3014429
[26] Utkin, V. I., Lee, H.:
Chattering problem in sliding mode control systems. In: Variable Structure Systems. VSS'06. International Workshop on Variable Structure Systems, (2006), pp. 346-350.
DOI 10.1109/vss.2006.1644542
[27] Utkin, V. I.:
Sliding Modes and their Application in Variable Structure Systems. Mir Publishers, Moscow 1978.
MR 0479534
[29] Watts, D., Duncan, J., Strogatz, S.:
Collective dynamics of 'small-world' networks. Nature 393 (1998), 6684, 440-442.
DOI 10.1038/30918 |
MR 1716136
[31] Vaidyanathan, S., Sampath, S.:
Global chaos synchronization of hyperchaotic Lorenz systems by sliding mode control. In: Advances in Digital Image Processing and Information Technology, Springer 2011, pp. 156-164.
DOI 10.1007/978-3-642-24055-3\_16
[34] Zhang, M., Xu, M., Han, M.:
Finite-time combination synchronization of uncertain complex networks by sliding mode control. Inform. Cybernet. Comput. Social Systems (ICCSS), (2017), 406-411.
DOI 10.1109/iccss.2017.8091448