Previous |  Up |  Next

Article

Title: On the accuracy of approximation of the distribution of negative-binomial random sums by the gamma distribution (English)
Author: Hung, Tran Loc
Author: Hau, Tran Ngoc
Language: English
Journal: Kybernetika
ISSN: 0023-5954 (print)
ISSN: 1805-949X (online)
Volume: 54
Issue: 5
Year: 2018
Pages: 921-936
Summary lang: English
.
Category: math
.
Summary: The main goal of this paper is to study the accuracy of approximation for the distributions of negative-binomial random sums of independent, identically distributed random variables by the gamma distribution. (English)
Keyword: gamma distribution
Keyword: negative-binomial random sums
Keyword: Trotter's distance
MSC: 60F05
MSC: 60G50
idZBL: Zbl 07031752
idMR: MR3893128
DOI: 10.14736/kyb-2018-5-0921
.
Date available: 2018-12-14T08:06:05Z
Last updated: 2020-01-05
Stable URL: http://hdl.handle.net/10338.dmlcz/147535
.
Reference: [1] Bevrani, H., Bening, V. E., Korolev, V. Yu.: On the accuracy of approximation of the negative-binomial distribution by the gamma distribution and convergence rate of the distributions of some statistics to the Student distribution..J. Math. Sci. 205 (2015), 1, 34-44. MR 3403276, 10.1007/s10958-015-2227-6
Reference: [2] Brown, M.: Error bound for exponential approximations of geometric convolutions..Ann. Probab. 18 (1990), 3, 1388-1402. MR 1062073, 10.1214/aop/1176990750
Reference: [3] Butzer, P. L., Hahn, L., U., Westphal: On the rate of approximation in the central limit theorem..J. Approx. Theory 13 (1975), 327-340. MR 0394809, 10.1016/0021-9045(75)90042-8
Reference: [4] Butzer, P. L., Hahn, L.: General theorems on rates of convergence in distribution of random variables I. General limit theorems..J. Multivariate Anal. 8 (1978), 181-201. MR 0497594, 10.1016/0047-259x(78)90071-4
Reference: [5] Butzer, P. L., Kirschfink, H., Schulz, D.: An extension of the Lindeberg-Trotter operator-theoretic approach to limit theorems for dependent random variables..Acta Sci. Math. 51 (1987), 423-433. MR 0940946
Reference: [6] Gavrilenko, S. V., Zubov, V. N., Korolev, V. Yu.: The rate of convergence of the distributions of regular statistics constructed from samples with negatively binomially distributed random sizes to the student distribution..J. Math. Sci. 220 (2017), 6, 701-713. MR 3595558, 10.1007/s10958-016-3213-3
Reference: [7] Grandell, J.: Risk Theory and geometric sums..Inform. Processes 2 (2002) 2, 180-181.
Reference: [8] Gut, A.: Probability: A Graduate Course..Springer Texts in Statistics. Springer, New York 2005. Zbl 1267.60001, MR 2125120
Reference: [9] Hogg, R. V., McKean, J. W., Craig, A. T.: Introduction to Mathematical Statistics. Seventh edition..Pearson Education, Inc. 2013. MR 0137186
Reference: [10] Hung, T. L.: On a Probability metric based on Trotter operator..Vietnam J. Math. 35 (2007), 1, 22-33. MR 2317431
Reference: [11] Hung, T. L.: On the rate of convergence in limit theorems for geometric sums..Southeast Asian J. Sci. 2 (2013) 2, 117-130.
Reference: [12] Kalashnikov, V.: Geometric Sums: Bounds for Rare Events with Applications..Kluwer Academic Publisher 1997. MR 1471479
Reference: [13] Kirschfink, H.: The generalized Trotter operator and weak convergence of dependent random variables in different probability metrics..Results Math. 15 (1989), 294-323. MR 0997067, 10.1007/BF03322619
Reference: [14] Korolev, V. Yu.: Convergence of random sequences with independent random indices. I (in Russian)..Teor. Veroyatnost. i Primenen. 39 (1994), 2, 313-333; translation in Theory Probab. Appl. 39 (1995), 2, 282-297. MR 1404685
Reference: [15] Kruglov, V. M., Korolev, V. Yu.: Limit theorems for Random Sums (in Russian)..Moskov. Gos. Univ., Moscow 1990. MR 1072999
Reference: [16] Malinowski, M. T.: Geometrically strictly semi-stable law as the limit laws..Discuss. Math. Probab. Statist. 27 (2007), 79-97. MR 2414775, 10.7151/dmps.1089
Reference: [17] Peköz, E., Röllin, A.: New rates for exponential approximation and the theorems of Rényi and Yaglom..Ann. Probab. 39 (2011), 2, 587-608. MR 2789507, 10.1214/10-aop559
Reference: [18] Peköz, E., Röllin, A., Ross, N.: Generalized Gamma approximation with rates for urns, walks and trees..Ann. Probab. 44 (2016) 3, 1776-1816. MR 3502594, 10.1214/15-aop1010
Reference: [19] Rényi, A.: Probability Theory..North-Holland Series in Applied Mathematics and Mechanics 10, North-Holland Publishing Co., Amsterdam-London; American Elsevier Publishing Co., Inc., New York. 1970. MR 0315747
Reference: [20] Rychlick, Z.: A central limit theorem for sums of a random number of independent random variables..Coll. Math. 35 (1976), 147-158. MR 0410866, 10.4064/cm-35-1-147-158
Reference: [21] Sunklodas, J. K.: On the normal approximation of a negative binomial random sum..Lith. Math. J. 55 (2015), 1, 150-158. MR 3323288, 10.1007/s10986-015-9271-2
Reference: [22] Trotter, H. F.: An elementary proof of the central limit theorem..Arch. Math. 10 (1959), 226-234. MR 0108847, 10.1007/BF01240790
.

Files

Files Size Format View
Kybernetika_54-2018-5_4.pdf 481.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo