[1] Dewilde, P.:
Stochastic modelling with orthogonal filters. In: Outils et modeles mathematiques pour l'automatique, l'analyse de systemes et le traitement du signal, CNRS (ed.), Paris 1982, pp. 331-398.
MR 0782526
[2] Lee, D. T. L., Morf, M., Friedlander, B.:
Recursive least-squares ladder estimation algorithms. IEEE Trans. Circuit Systems CAS 28 (1981), 467-481.
DOI 10.1109/tcs.1981.1085020 |
MR 0629997
[3] Jurečková, J.:
Regression quantiles and trimmed least squares estimator under a general design. Kybernetika 20 (1984), 5, 345-357.
MR 0776325 |
Zbl 0561.62027
[5] Mandl, P., Duncan, T. E., Pasik-Duncan, B.:
On the consistency of a least squares identification procedure. Kybernetika 24 (1988), 5, 340-346.
MR 0970211
[6] Mendel, J. M.:
Tutorial on higher-order statistics (spectra) in signal processing and system theory: theoretical results and some applications. Proc. IEEE 79 (1991), 3, 278-305.
DOI 10.1109/5.75086
[7] Pázman, A.:
Probability distribution of the multivariate nonlinear least squares estimates. Kybernetika 20 (1984), 3, 209-230.
MR 0763647
[8] Pronzato, L., Pázman, A.:
Second-order approximation of the entropy in nonlinear least-squares estimation. Kybernetika 30 (1994), 2, 187-198.
MR 1283494
[9] Schur, I.:
Methods in 0perator Theory and Signal Processing. Operator Theory: Advances and Applications 18, Springer-Verlag 1086.
DOI 10.1007/978-3-0348-5483-2
[11] Wiener, N.:
Nonlinear Problems in Random Theory. MIT Press, 1958.
MR 0100912