Previous |  Up |  Next

Article

Keywords:
cup-length; Grassmann manifold; characteristic rank; Stiefel-Whitney class
Summary:
We estimate the characteristic rank of the canonical $k$–plane bundle over the oriented Grassmann manifold $\widetilde{G}_{n,k}$. We then use it to compute uniform upper bounds for the $\mathbb{Z}_2$–cup-length of $\widetilde{G}_{n,k}$ for $n$ belonging to certain intervals.
References:
[1] Borel, A.: La cohomologie mod $2$ de certains espaces homogènes. Comment. Math. Helv. 27 (1953), 165–197. DOI 10.1007/BF02564561 | MR 0057541
[2] Fukaya, T.: Gröbner bases of oriented Grassmann manifolds. Homology, Homotopy Appl. 10 (2008), 195–209. DOI 10.4310/HHA.2008.v10.n2.a10 | MR 2475609
[3] Jaworowski, J.: An additive basis for the cohomology of real Grassmannians. Lecture Notes in Math., vol. 1474, Springer, Berlin, 1991, Algebraic topology Poznań 1989, 231–234. DOI 10.1007/BFb0084749 | MR 1133904
[4] Korbaš, J.: The cup-length of the oriented Grassmannians vs a new bound for zero-cobordant manifolds. Bull. Belg. Math. Soc. Simon Stevin 17 (2010), 69–81. MR 2656672
[5] Korbaš, J.: The characteristic rank and cup-length in oriented Grassmann manifolds. Osaka J. Math. 52 (2015), 1163–1172. MR 3426634
[6] Korbaš, J., Rusin, T.: A note on the $\mathbb{Z}_2$-cohomology algebra of oriented Grassmann manifolds. Rend. Circ. Mat. Palermo (2) 65 (2016), 507–517. DOI 10.1007/s12215-016-0249-7 | MR 3571326
[7] Korbaš, J., Rusin, T.: On the cohomology of oriented Grassmann manifolds. Homology, Homotopy, Appl. 18 (2) (2016), 71–84. DOI 10.4310/HHA.2016.v18.n2.a4 | MR 3518983
[8] Milnor, J., Stasheff, J.: Characteristic Classes. Princeton University Press, Princeton, N. J.; University of Tokyo Press, Tokyo, 1974. MR 0440554 | Zbl 0298.57008
[9] Naolekar, A.C., Thakur, A.S.: Note on the characteristic rank of vector bundles. Math. Slovaca 64 (2014), 1525–1540. DOI 10.2478/s12175-014-0289-4 | MR 3298036
[10] Petrović, Z.Z., Prvulović, B. I., Radovanović, M.: Characteristic rank of canonical vector bundles over oriented Grassmann manifolds $\widetilde{G}_{n,3}$. Topology Appl. 230 (2017), 114–121. MR 3702758
[11] Rusin, T.: A note on the characteristic rank of oriented Grassmann manifolds. Topology Appl. 216 (2017), 48–58. DOI 10.1016/j.topol.2016.11.009 | MR 3584122
[12] Stong, R.E.: Semicharacteristics of oriented Grassmannians. J. Pure Appl. Algebra 33 (1984), 97–103. DOI 10.1016/0022-4049(84)90029-X | MR 0750235
Partner of
EuDML logo