Previous |  Up |  Next

Article

Keywords:
asymptotics of functionals; innovation; stationary Gibbs particle process; Wasserstein distance
Summary:
In the paper asymptotic properties of functionals of stationary Gibbs particle processes are derived. Two known techniques from the point process theory in the Euclidean space $\mathbb{R}^d$ are extended to the space of compact sets on $\mathbb{R}^d$ equipped with the Hausdorff metric. First, conditions for the existence of the stationary Gibbs point process with given conditional intensity have been simplified recently. Secondly, the Malliavin-Stein method was applied to the estimation of Wasserstein distance between the Gibbs input and standard Gaussian distribution. We transform these theories to the space of compact sets and use them to derive a Gaussian approximation for functionals of a planar Gibbs segment process.
References:
[1] Beneš, V., Večeřa, J., Pultar, M.: Planar segment processes with reference mark distributions, modeling and simulation. Methodol. Comput. Appl. Probab. (2018), accepted. DOI 10.1007/s11009-017-9608-x
[2] Blaszczyszyn, B., Yogeshwaran, D., Yukich, J. E.: Limit theory for geometric statistics of point processes having fast decay of correlations. Preprint (2018), submitted to the Annals of Probab. DOI 
[3] Daley, D. J., Vere-Jones, D.: An Introduction to the Theory of Point Processes. Volume I: Elementary Theory and Methods. MR 1950431
[4] Dereudre, D.: Introduction to the theory of Gibbs point processes. Preprint (2017), submitted. DOI 
[5] Georgii, H.-O.: Gibbs Measures and Phase Transitions. Second edition. W. de Gruyter and Co., Berlin 2011. DOI 10.1515/9783110250329 | MR 2807681
[6] Last, G., Penrose, M.: Lectures on the Poisson Process. Cambridge University Press, Cambridge 2017. DOI 10.1017/9781316104477 | MR 3791470
[7] Mase, S.: Marked Gibbs processes and asymptotic normality of maximum pseudo-likelihood estimators. Math. Nachr. 209 (2000), 151-169. DOI 10.1002/(sici)1522-2616(200001)209:1<151::aid-mana151>3.0.co;2-j | MR 1734363
[8] Ruelle, D.: Superstable interactions in classical statistical mechanics. Commun. Math. Phys. 18 (1970), 127-159. DOI 10.1007/bf01646091 | MR 0266565
[9] Schneider, R., Weil, W.: Stochastic and Integral Geometry. Springer, Berlin 2008. DOI 10.1007/978-3-540-78859-1 | MR 2455326 | Zbl 1175.60003
[10] Schreiber, T., Yukich, J. E.: Limit theorems for geometric functionals of Gibbs point processes. Ann. Inst. Henri Poincaré - Probab. et Statist. 49 (2013), 1158-1182. DOI 10.1214/12-aihp500 | MR 3127918
[11] Serra, J.: Image Analysis and Mathematical Morphology. Academic Press, London 1982. DOI 10.1002/cyto.990040213 | MR 0753649
[12] Stucki, K., Schuhmacher, D.: Bounds for the probability generating functional of a Gibbs point process. Adv. Appl. Probab. 46 (2014), 21-34. DOI 10.1239/aap/1396360101 | MR 3189046
[13] Torrisi, G. L.: Probability approximation of point processes with Papangelou conditional intensity. Bernoulli 23 (2017), 2210-2256. DOI 10.3150/16-bej808 | MR 3648030
[14] Večeřa, J., Beneš, V.: Approaches to asymptotics for U-statistics of Gibbs facet processes. Statist. Probab. Let. 122 (2017), 51-57. DOI 10.1016/j.spl.2016.10.024 | MR 3584137
[15] Xia, A., Yukich, J. E.: Normal approximation for statistics of Gibbsian input in geometric probability. Adv. Appl. Probab. 25 (2015), 934-972. DOI 10.1017/s0001867800048965 | MR 3433291
Partner of
EuDML logo