[1] Aström, K. J., Murray, R. M.:
Feedback Systems: An Introduction for Scientists and Engineers. Princeton University Press, 2008.
DOI 10.1086/596297 |
MR 2400446
[2] Bartosiewicz, Z., Kotta, Ü., Tõnso, M., Wyrwas, M.:
Accessibility conditions of MIMO nonlinear control systems on homogeneous time scales. Math. Control Relat. Fields 6 (2016), 217-250.
DOI 10.3934/mcrf.2016002 |
MR 3510298
[3] Belikov, J., Kotta, P., Kotta, Ü., Tõnso, M.:
Practical polynomial formulas in MIMO nonlinear realization problem. In: 51st IEEE Conference on Decision and Control, Hawaii 2012, pp. 1253-1258.
DOI 10.1109/cdc.2012.6427109
[4] Belikov, J., Kotta, Ü., Tõnso, M.:
Adjoint polynomial formulas for nonlinear state-space realization. IEEE Trans. Automat. Control 59 (2014), 256-261.
DOI 10.1109/cdc.2012.6427109 |
MR 3163347
[8] Crouch, P. E., Lamnabhi-Lagarrigue, F.:
State space realizations of nonlinear systems defined by input-output differential equations. In: Analysis and Optimization of Systems, Springer, Berlin, Heidelberg 1988, pp 138-149.
DOI 10.1007/bfb0042209 |
MR 0956266
[9] Delaleau, E., Respondek, W.:
Lowering the orders of derivatives of controls in generalized state space systems. J. Math. Systems, Estimation, Control 5 (1995), 1-27.
MR 1651823 |
Zbl 0852.93016
[10] Halas, M., Kawano, Y., Moog, C. H., Ohtsuka, T.:
Realization of a nonlinear system in the feedforward form: a polynomial approach. In: 19th IFAC World Congress, Cape Town 2014, pp. 9480-9485.
DOI 10.3182/20140824-6-za-1003.00990
[12] Kolchin, E. R.:
Differential Algebra and Algebraic Groups. Academic Press, New York 1973.
MR 0568864
[13] Kotta, Ü., Mullari, T.:
Equivalence of realizability conditions for nonlinear control systems. Proc. Est. Acad. Sci. Physics. Math. 55 (2006), 24-42.
MR 2211488
[14] Kotta, Ü., Sadegh, N.:
Two approaches for state space realization of NARMA models: bridging the gap. Math. Comput. Model. Dyn. Syst. 8 (2002), 21-32.
DOI 10.1076/mcmd.8.1.21.8340
[15] Morales, V. L., Plestan, F., Glumineau, A.:
Linearization by completely generalized input-output injection. Kybernetika 35 (1999), 793-802.
MR 1747977
[18] Tõnso, M., Kotta, Ü.:
Realization of continuous-time nonlinear input-output equations: polynomial approach. In: 12th International Conference on Computer Aided Systems Theory, Gran Canaria 2009, pp. 633-640.
DOI 10.1007/978-3-642-04772-5_82
[19] Schaft, A. J. van der:
On realization of nonlinear systems described by higher-order differential equations. Math. Systems Theory 19 (1987), 239-275.
DOI 10.1007/bf01704916 |
MR 0871787
[20] Zhang, J., Moog, C. H., Xia, X.:
Realization of multivariable nonlinear systems via the approaches of differential forms and differential algebra. Kybernetika 46 (2010), 799-830.
MR 2778926 |
Zbl 1205.93030