[3] Agrawal, O. P.:
A quadratic numerical scheme for fractional optimal control problems. J. Dyn. Syst. Meas. Control 130 (2007), 011010, 6 pages.
DOI 10.1115/1.2814055 |
MR 2463065
[5] Agrawal, O. P.:
Fractional optimal control of a distributed system using eigenfunctions. J. Comput. Nonlinear Dyn. 3 (2008), 021204, 6 pages.
DOI 10.1115/1.2833873 |
MR 2466118
[7] Alipour, M., Rostamy, D., Baleanu, D.:
Solving multi-dimensional fractional optimal control problems with inequality constraint by Bernstein polynomials operational matrices. J. Vib. Control 19 (2013), 2523-2540.
DOI 10.1177/1077546312458308 |
MR 3179222 |
Zbl 1358.93097
[11] Bryson, A. E., Ho, Y. C.:
Applied Optimal Control. Optimization, Estimation, and Control. Hemisphere, Washington (1975).
MR 0446628
[13] Darby, C. L., Hager, W. W., Rao, A. V.:
An $hp$-adaptive pseudospectral method for solving optimal control problems. Optim. Control Appl. Methods 32 (2011), 476-502.
DOI 10.1002/oca.957 |
MR 2850736 |
Zbl 1266.49066
[17] Elnagar, G., Kazemi, M. A., Razzaghi, M.:
The Pseudospectral Legendre method for discretizing optimal control problems. IEEE Trans. Autom. Control 40 (1995), 1793-1796.
DOI 10.1109/9.467672 |
MR 1354521 |
Zbl 0863.49016
[19] Fahroo, F., Roos, I. M.:
Direct trajectory optimization by a Chebyshev pseudospectral method. J. Guid Control Dyn. 25 (2002), 160-166.
DOI 10.2514/2.4862
[20] Foroozandeh, Z., Shamsi, M.:
Solution of nonlinear optimal control problems by the interpolating scaling functions. Acta Astronautica 72 (2012), 21-26.
DOI 10.1016/j.actaastro.2011.10.004
[22] Holsapple, R., Venkataraman, R., Doman, D.:
A modified simple shooting method for solving two-point boundary value problems. IEEE Aerospace Conf. Proc. 6 (2003), 2783-2790.
DOI 10.1109/AERO.2003.1235204
[24] Jiang, C., Lin, Q., Yu, C., Teo, K. L., Duan, G.-R.:
An exact penalty method for free terminal time optimal control problem with continuous inequality constraints. J. Optim. Theory Appl. 154 (2012), 30-53.
DOI 10.1007/s10957-012-0006-9 |
MR 2931365 |
Zbl 1264.49036
[25] Kafash, B., Delavarkhalafi, A., Karbassi, S. M., Boubaker, K.:
A numerical approach for solving optimal control problems using the Boubaker polynomials expansion scheme. J. Interpolat. Approx. Sci. Comput. 2014 (2014), Article ID 00033, 18 pages.
DOI 10.5899/2014/jiasc-00033 |
MR 3200248
[29] Khalid, A., Huey, J., Singhose, W., Lawrence, J., Frakes, D.:
Human operator performance testing using an input-shaped bridge crane. J. Dyn. Syst. Meas. Control 128 (2006), 835-841.
DOI 10.1115/1.2361321
[31] Kirk, D. E.: Optimal Control Theory: An Introduction. Dover Publication, New York (2004).
[32] Kreyszig, E.:
Introductory Functional Analysis with Applications. John Wiley & Sons, New York (1978).
MR 0467220 |
Zbl 0368.46014
[34] Li, M., Peng, H.:
Solutions of nonlinear constrained optimal control problems using quasilinearization and variational pseudospectral methods. ISA Trans. 62 (2016), 177-192.
DOI 10.1016/j.isatra.2016.02.007
[35] Lotfi, A., Yousefi, S. A., Dehghan, M.:
Numerical solution of a class of fractional optimal control problems via the Legendre orthonormal basis combined with the operational matrix and the Gauss quadrature rule. J. Comput. Appl. Math. 250 (2013), 143-160.
DOI 10.1016/j.cam.2013.03.003 |
MR 3044581 |
Zbl 1286.49030
[36] Lu, Z.:
New a posteriori $L^\infty(L^2)$ and $L^2(L^2)$-error estimates of mixed finite element methods for general nonlinear parabolic optimal control problems. Appl. Math., Praha 61 (2016), 135-163.
DOI 10.1007/s10492-016-0126-x |
MR 3470771 |
Zbl 1389.49018
[40] Marzban, H. R., Tabrizidooz, H. R., Razzaghi, M.:
A composite collocation method for the nonlinear mixed Volterra-Fredholm-Hammerstein integral equations. Commun. Nonlinear Sci. Numer. Simul. 16 (2011), 1186-1194.
DOI 10.1016/j.cnsns.2010.06.013 |
MR 2736626 |
Zbl 1221.65340
[41] Mashayekhi, S., Razzaghi, M.:
An approximate method for solving fractional optimal control problems by hybrid functions. J. Vib. Control 24 (2018), 1621-1631.
DOI 10.1177/1077546316665956 |
MR 3785609
[42] Mehra, R. K., Davis, R. E.:
A generalized gradient method for optimal control problems with inequality constraints and singular arcs. IEEE Trans. Autom. Control 17 (1972), 69-79.
DOI 10.1109/TAC.1972.1099881 |
Zbl 0268.49038
[45] Nemati, A., Yousefi, S., Soltanian, F., Ardabili, J. S.:
An efficient numerical solution of fractional optimal control problems by using the Ritz method and Bernstein operational matrix. Asian J. Control 18 (2016), 2272-2282.
DOI 10.1002/asjc.1321 |
MR 3580387 |
Zbl 1359.65100
[47] Ordokhani, Y., Razzaghi, M.:
Linear quadratic optimal control problems with inequality constraints via rationalized Haar functions. Dyn. Contin. Discrete Impuls. Syst., Ser. B, Appl. Algorithms 12 (2005), 761-773.
MR 2179602 |
Zbl 1081.49026
[49] Pu, Y.-F., Siarry, P., Zhou, J.-L., Zhang, N.:
A fractional partial differential equation based multiscale denoising model for texture image. Math. Methods Appl. Sci. 37 (2014), 1784-1806.
DOI 10.1002/mma.2935 |
MR 3231073 |
Zbl 1301.35203
[51] Rabiei, K., Ordokhani, Y., Babolian, E.:
Fractional-order Boubaker functions and their applications in solving delay fractional optimal control problems. J. Vib. Control 24 (2018), 3370-3383.
DOI 10.1177/1077546317705041 |
MR 3841934
[56] Schittkowski, K.:
NLPQL: A FORTRAN subroutine solving constrained nonlinear programming problems. Ann. Oper. Res. 5 (1986), 485-500.
DOI 10.1007/BF02739235 |
MR 0948031
[60] Tuan, L. A., Lee, S. G.:
Sliding mode controls of double-pendulum crane systems. J. Mech. Sci. Technol. 27 (2013), 1863-1873.
DOI 10.1007/s12206-013-0437-8
[62] Wang, X., Peng, H., Zhang, S., Chen, B., Zhong, W.:
A symplectic pseudospectral method for nonlinear optimal control problems with inequality constraints. ISA Trans. 68 (2017), 335-352.
DOI 10.1016/j.isatra.2017.02.018 |
MR 3534963
[65] Yonthanthum, W., Rattana, A., Razzaghi, M.:
An approximate method for solving fractional optimal control problems by the hybrid of block-pulse functions and Taylor polynomials. Optim. Control Appl. Methods 39 (2018), 873-887.
DOI 10.1002/oca.2383 |
MR 3796971 |
Zbl 06909040