Previous |  Up |  Next

Article

Keywords:
axiom of choice; countably compact; lightly compact topological space; pseudocompact topological space
Summary:
We study in ZF and in the class of $T_{1}$ spaces the web of implications/ non-implications between the notions of pseudocompactness, light compactness, countable compactness and some of their ZFC equivalents.
References:
[1] Dow A., Porter J. R., Stephenson Jr. R. M., Woods R. G.: Spaces whose pseudocompact subspaces are closed subsets. Appl. Gen. Topol. 5 (2004), no. 2, 243–264. DOI 10.4995/agt.2004.1973 | MR 2121792 | Zbl 1066.54024
[2] Hewitt E.: Rings of real-valued continuous functions I. Trans. Amer. Math. Soc. 64 (1948), 45–99. DOI 10.1090/S0002-9947-1948-0026239-9 | MR 0026239 | Zbl 0032.28603
[3] Howard P., Rubin J. E.: Consequences of the Axiom of Choice. Mathematical Surveys and Monographs, 59, American Mathematical Society, Providence, 1998. DOI 10.1090/surv/059 | MR 1637107 | Zbl 0947.03001
[4] Keremedis K.: On lightly and countably compact spaces in $ ZF$. published online in Quaest. Math. (2018), 14 pages.
[5] Mardešić S., Papić P.: Sur les espaces dont toute transformation réelle continue est bornée. Hrvatsko Prirod. Društvo. Glasnik Mat.-Fiz. Astr. Ser. II. 10 (1955), 225–232 (French. Serbo-Croatian summary). MR 0080292
[6] Scott B. M.: Pseudocompact, metacompact spaces are compact. The Proc. of the 1979 Topology Conf., Ohio Univ., Athens, Ohio, 1979, Topology Proc. 4 (1979), no. 2, 577–587. MR 0598295
[7] Stone A. H.: Hereditarily compact spaces. Amer. J. Math. 82 (1960), 900–916. DOI 10.2307/2372948 | MR 0120620
[8] Watson W. S.: Pseudocompact metacompact spaces are compact. Proc. Amer. Math. Soc. 81 (1981), no. 1, 151–152. MR 0589159
Partner of
EuDML logo