[2] Babuška, I., Osborn, J.:
Eigenvalue problems. Handbook of Numerical Analysis. II: Finite Element Methods (Part 1) North-Holland, Amsterdam P. G. Ciarlet, J. L. Lions (1991), 641-787.
MR 1115240 |
Zbl 0875.65087
[6] Davidson, E. R., Thompson, W. J.:
Monster matrices: their eigenvalues and eigenvectors. Comput. Phys. 7 (1993), 519-522.
DOI 10.1063/1.4823212
[8] Golub, G. H., Loan, C. F. Van:
Matrix Computations. Johns Hopkins Studies in the Mathematical Sciences, The Johns Hopkins University Press, Baltimore (2013).
MR 3024913 |
Zbl 1268.65037
[9] Hackbusch, W.:
On the computation of approximate eigenvalues and eigenfunctions of elliptic operators by means of a multi-grid method. SIAM J. Numer. Anal. 16 (1979), 201-215.
DOI 10.1137/0716015 |
MR 0526484 |
Zbl 0403.65043
[13] Lin, Q., Lin, J.: Finite Element Methods: Accuracy and Improvement. Mathematics Monograph Series 1, Elsevier (2006).
[14] Lin, Q., Xie, H.:
An observation on the Aubin-Nitsche lemma and its applications. Math. Pract. Theory 41 Chinese (2011), 247-258.
MR 2931490 |
Zbl 1265.65235
[16] Lin, Q., Xie, H.:
A multilevel correction type of adaptive finite element method for Steklov eigenvalue problems. Proc. Int. Conf. Applications of Mathematics 2012 J. Brandts et al. Academy of Sciences of the Czech Republic, Institute of Mathematics, Praha (2012), 134-143.
MR 3204407 |
Zbl 1313.65298
[17] Lin, Q., Yan, N.: The Construction and Analysis of High Efficiency Finite Element Methods. Hebei University Publishers, Shijiazhuang (1996).
[18] Saad, Y.:
Numerical Methods for Large Eigenvalue Problems. Algorithms and Architectures for Advanced Scientific Computing, Manchester University Press, Manchester; Halsted Press, New York (1992).
DOI 10.1137/1.9781611970739 |
MR 1177405 |
Zbl 0991.65039
[21] Sleijpen, G. L. G., Vorst, H. A. van der: The Jacobi-Davidson method for eigenvalue problems and its relation with accelerated inexact Newton scheme. IMACS 1996: Iterative Methods in Linear Algebra II S. Margenov, P. Vassilevski Blagoevgrad, Bulgaria (1996).