[1] Apel, T.:
Anisotropic Finite Elements: Local Estimates and Applications. Advances in Numerical Mathematics, Teubner, Leipzig; Technische Univ., Chemnitz (1999).
MR 1716824 |
Zbl 0934.65121
[3] Atkinson, K. E.:
An Introduction to Numerical Analysis. John Wiley & Sons, New York (1978).
MR 0504339 |
Zbl 0402.65001
[9] Ciarlet, P. G.:
The Finite Element Method for Elliptic Problems. Studies in Mathematics and Its Applications 4, North-Holland Publishing, Amsterdam (1978).
MR 0520174 |
Zbl 0383.65058
[19] Křížek, M.:
On semiregular families of triangulations and linear interpolation. Appl. Math., Praha 36 (1991), 223-232.
MR 1109126 |
Zbl 0728.41003
[22] Křížek, M., Preiningerová, V.: Calculation of the 3d temperature field of synchronous and of induction machines by the finite element method. Elektrotechn. obzor 80 (1991), 78-84 Czech.
[23] Kučera, V.:
A note on necessary and sufficient conditions for convergence of the finite element method. Proc. Int. Conf. Applications of Mathematics, Praha Czech Academy of Sciences, Institute of Mathematics, Praha J. Brandts et al. (2015), 132-139.
MR 3700195 |
Zbl 1363.65189
[28] Synge, J. L.:
The Hypercircle in Mathematical Physics. A Method for the Approximate Solution of Boundary Value Problems. Cambridge University Press, New York (1957).
MR 0097605 |
Zbl 0079.13802
[29] Ženíšek, A.:
Convergence of the finite element method for boundary value problems of a system of elliptic equations. Apl. Mat. 14 Czech (1969), 355-376.
MR 0245978 |
Zbl 0188.22604