[3] Acar, T., Aral, A., Mohiuddine, S. A.:
Approximation by bivariate $(p,q)$-Bernstein-Kantorovich operators. (to appear) in Iran. J. Sci. Technol., Trans. A, Sci. (first online in June 2016), 8 pages.
DOI 10.1007/s40995-016-0045-4 |
MR 3806171
[10] Hounkonnou, M.N., Kyemba, J. D. B.:
$R(p,q)$-calculus: differentiation and integration. SUT J. Math. 49 (2013), 145-167.
MR 3222506 |
Zbl 06308085
[11] Korovkin, P. P.:
Linear Operators and Approximation Theory. Russian Monographs and Texts on Advanced Mathematics and Physics. Vol. III. Gordon and Breach Publishers, New York (1960).
MR 0150565 |
Zbl 0094.10201
[12] Lupaş, A.:
A $q$-analogue of the Bernstein operator. Prepr., "Babeş-Bolyai" Univ., Fac. Math., Res. Semin. 9 (1987), 85-92.
MR 0956939 |
Zbl 0684.41014
[13] Milovanović, G. V., Gupta, V., Malik, N.:
$(p,q)$-Beta functions and applications in approximation. (to appear) in Bol. Soc. Mat. Mex., III. Ser. (first online in June 2016), 19 pages (2016), 19 pages.
DOI 10.1007/s40590-016-0139-1 |
MR 3773107
[15] Mursaleen, M., Ansari, K. J., Khan, A.:
Some approximation results by $(p,q)$-analogue of Bernstein-Stancu operators. Appl. Math. Comput. 264 (2015), 392-402 corrigendum ibid. 269 2015 744-746.
DOI 10.1016/j.amc.2015.03.135 |
MR 3351620
[16] Mursaleen, M., Ansari, K. J., Khan, A.:
On $(p,q)$-analogue of Bernstein operators. Appl. Math. Comput. 266 (2015), 874-882 corrigendum ibid. 278 2016 70-71.
DOI 10.1016/j.amc.2015.04.090 |
MR 3377604
[17] Mursaleen, M., Nasiruzzaman, Md., Khan, A., Ansari, K. J.:
Some approximation results on Bleimann-Butzer-Hahn operators defined by $(p,q)$-integers. Filomat 30 (2016), 639-648.
DOI 10.2298/FIL1603639M |
MR 3498662
[20] Phillips, G. M.:
Bernstein polynomials based on the $q$-integers. Ann. Numer. Math. 4 (1997), 511-518.
MR 1422700 |
Zbl 0881.41008