Previous |  Up |  Next

Article

Keywords:
$(p, q)$-integer; $(p, q)$-Bernstein-Durrmeyer operator; $q$-Bernstein-Durrmeyer operator; modulus of continuity; positive linear operator; Korovkin type approximation theorem
Summary:
We introduce modified $(p,q)$-Bernstein-Durrmeyer operators. We discuss approximation properties for these operators based on Korovkin type approximation theorem and compute the order of convergence using usual modulus of continuity. We also study the local approximation property of the sequence of positive linear operators ${D}_{n,p,q}^{\ast }$ and compute the rate of convergence for the function $f$ belonging to the class ${\rm Lip}_{M}(\gamma )$.
References:
[1] Acar, T.: Asymptotic formulas for generalized Szász-Mirakyan operators. Appl. Math. Comput. 263 (2015), 233-239. DOI 10.1016/j.amc.2015.04.060 | MR 3348539
[2] Acar, T.: $(p,q)$-generalization of Szász-Mirakyan operators. Math. Methods Appl. Sci. 39 (2016), 2685-2695. DOI 10.1002/mma.3721 | MR 3512775 | Zbl 1342.41019
[3] Acar, T., Aral, A., Mohiuddine, S. A.: Approximation by bivariate $(p,q)$-Bernstein-Kantorovich operators. (to appear) in Iran. J. Sci. Technol., Trans. A, Sci. (first online in June 2016), 8 pages. DOI 10.1007/s40995-016-0045-4 | MR 3806171
[4] Acar, T., Aral, A., Mohiuddine, S. A.: On Kantorovich modification of $(p,q)$-Baskakov operators. J. Inequal. Appl. 2016 (2016), Paper No. 98, 14 pages. DOI 10.1186/s13660-016-1045-9 | MR 3479372 | Zbl 1333.41007
[5] Acar, T., Ulusoy, G.: Approximation by modified Szász-Durrmeyer operators. Period. Math. Hung. 72 (2016), 64-75. DOI 10.1007/s10998-015-0091-2 | MR 3470805
[6] Altomare, F., Campiti, M.: Korovkin-type Approximation Theory and Its Applications. de Gruyter Studies in Mathematics 17, Walter de Gruyter & Co., Berlin (1994). DOI 10.1515/9783110884586 | MR 1292247 | Zbl 0924.41001
[7] Cai, Q. B., Zhou, G.: On $(p,q)$-analogue of Kantorovich type Bernstein-Stancu-Schurer operators. Appl. Math. Comput. 276 (2016), 12-20. DOI 10.1016/j.amc.2015.12.006 | MR 3451993
[8] Chakrabarti, R., Jagannathan, R.: A $(p,q)$-oscillator realization of two parameter quantum algebras. J. Phys. A, Math. Gen. 24 (1991), L711--L718. DOI 10.1088/0305-4470/24/13/002 | MR 1116019 | Zbl 0735.17026
[9] Gupta, V.: Some approximation properties of $q$-Durrmeyer operators. Appl. Math. Comput. 197 (2008), 172-178. DOI 10.1016/j.amc.2007.07.056 | MR 2396302 | Zbl 1142.41008
[10] Hounkonnou, M.N., Kyemba, J. D. B.: $R(p,q)$-calculus: differentiation and integration. SUT J. Math. 49 (2013), 145-167. MR 3222506 | Zbl 06308085
[11] Korovkin, P. P.: Linear Operators and Approximation Theory. Russian Monographs and Texts on Advanced Mathematics and Physics. Vol. III. Gordon and Breach Publishers, New York (1960). MR 0150565 | Zbl 0094.10201
[12] Lupaş, A.: A $q$-analogue of the Bernstein operator. Prepr., "Babeş-Bolyai" Univ., Fac. Math., Res. Semin. 9 (1987), 85-92. MR 0956939 | Zbl 0684.41014
[13] Milovanović, G. V., Gupta, V., Malik, N.: $(p,q)$-Beta functions and applications in approximation. (to appear) in Bol. Soc. Mat. Mex., III. Ser. (first online in June 2016), 19 pages (2016), 19 pages. DOI 10.1007/s40590-016-0139-1 | MR 3773107
[14] Mursaleen, M., Alotaibi, A., Ansari, K. J.: On a Kantorovich variant of $(p,q)$-Szász-Mirakjan operators. J. Funct. Spaces 2016 (2016), Article ID 1035253, 9 pages. DOI 10.1155/2016/1035253 | MR 3459656 | Zbl 1337.41011
[15] Mursaleen, M., Ansari, K. J., Khan, A.: Some approximation results by $(p,q)$-analogue of Bernstein-Stancu operators. Appl. Math. Comput. 264 (2015), 392-402 corrigendum ibid. 269 2015 744-746. DOI 10.1016/j.amc.2015.03.135 | MR 3351620
[16] Mursaleen, M., Ansari, K. J., Khan, A.: On $(p,q)$-analogue of Bernstein operators. Appl. Math. Comput. 266 (2015), 874-882 corrigendum ibid. 278 2016 70-71. DOI 10.1016/j.amc.2015.04.090 | MR 3377604
[17] Mursaleen, M., Nasiruzzaman, Md., Khan, A., Ansari, K. J.: Some approximation results on Bleimann-Butzer-Hahn operators defined by $(p,q)$-integers. Filomat 30 (2016), 639-648. DOI 10.2298/FIL1603639M | MR 3498662
[18] Mursaleen, M., Nasiuzzaman, Md., Nurgali, A.: Some approximation results on Bernstein-Schurer operators defined by $(p,q)$-integers. J. Inequal. Appl. 2015 (2015), Paper No. 249, 12 pages. DOI 10.1186/s13660-015-0767-4 | MR 3382856 | Zbl 1334.41036
[19] Mursaleen, M., Sarsenbi, A. M., Khan, T.: On $(p,q)$-analogue of two parametric Stancu-beta operators. J. Inequal. Appl. 2016 (2016), Paper No. 190, 15 pages. DOI 10.1186/s13660-016-1128-7 | MR 3532366 | Zbl 1347.41029
[20] Phillips, G. M.: Bernstein polynomials based on the $q$-integers. Ann. Numer. Math. 4 (1997), 511-518. MR 1422700 | Zbl 0881.41008
[21] Sharma, H.: Note on approximation properties of generalized Durrmeyer operators. Math. Sci., Springer (electronic only) 6 (2012), Paper No. 24, 6 pages. DOI 10.1186/2251-7456-6-24 | MR 3002753 | Zbl 1264.41017
[22] Sharma, H.: On Durrmeyer-type generalization of $(p,q)$-Bernstein operators. Arab. J. Math. 5 (2016), 239-248. DOI 10.1007/s40065-016-0152-2 | MR 3570370 | Zbl 06682028
[23] Sharma, H., Gupta, C.: On $(p,q)$-generalization of Szász-Mirakyan-Kantorovich operators. Boll. Unione Mat. Ital. 8 (2015), 213-222. DOI 10.1007/s40574-015-0038-9 | MR 3425421 | Zbl 1331.41030
[24] Ulusoy, G., Acar, T.: $q$-Voronovskaya type theorems for $q$-Baskakov operators. Math. Methods Appl. Sci. 39 (2016), 3391-3401. DOI 10.1002/mma.3784 | MR 3521262 | Zbl 1347.41030
Partner of
EuDML logo