Previous |  Up |  Next

Article

Keywords:
edge coloring; nearly bipartite graph; edge covering coloring; $g_c$-coloring; edge cover decomposition
Summary:
Let $G$ be a simple graph, let $d(v)$ denote the degree of a vertex $v$ and let $g$ be a nonnegative integer function on $V(G)$ with $0\leq g(v)\leq d(v)$ for each vertex $v\in \nobreak V(G)$. A $g_c$-coloring of $G$ is an edge coloring such that for each vertex $v\in V(G)$ and each color $c$, there are at least $g(v)$ edges colored $c$ incident with $v$. The $g_c$-chromatic index of $G$, denoted by $\chi '_{g_c}(G)$, is the maximum number of colors such that a $g_c$-coloring of $G$ exists. Any simple graph $G$ has the $g_c$-chromatic index equal to $\delta _g(G)$ or $\delta _g(G)-1$, where $\delta _g(G)= \min _{v\in V(G)}\lfloor {d(v)}/{g(v)}\rfloor $. A graph $G$ is nearly bipartite, if $G$ is not bipartite, but there is a vertex $u\in V(G)$ such that $G-u$ is a bipartite graph. We give some new sufficient conditions for a nearly bipartite graph $G$ to have $\chi '_{g_c}(G)=\delta _g(G)$. Our results generalize some previous results due to Wang et al.\ in 2006 and Li and Liu in 2011.
References:
[1] Bondy, J. A., Murty, U. S. R.: Graph Theory with Applications. Macmillan Press, London (1976). MR 0411988 | Zbl 1226.05083
[2] Gupta, R. P.: On decompositions of multi-graph into spanning subgraphs. Bull. Am. Math. Soc. 80 (1974), 500-502. DOI 10.1090/S0002-9904-1974-13468-3 | MR 0335367 | Zbl 0291.05113
[3] Holyer, I.: The NP-completeness of edge coloring. SIAM J. Comput. 10 (1981), 718-720. DOI 10.1137/0210055 | MR 0635430 | Zbl 0473.68034
[4] Li, J., Liu, G.: On $f$-edge cover coloring of nearly bipartite graphs. Bull. Malays. Math. Sci. Soc. (2) 34 (2011), 247-253. MR 2788398 | Zbl 1221.05149
[5] Nakano, S., Nishizeki, T.: Scheduling file transfers under port and channel constrains. Int. J. Found. Comput. Sci. 4 (1993), 101-115. DOI 10.1142/S0129054193000079 | MR 1252522 | Zbl 0802.68015
[6] Song, H., Liu, G.: On $f$-edge cover-coloring of simple graphs. Acta Math. Sci., Ser. B, Engl. Ed. 25 (2005), 145-151. DOI 10.1016/S0252-9602(17)30271-0 | MR 2119347 | Zbl 1064.05064
[7] Song, H., Liu, G.: $f$-edge cover-coloring of graphs. Acta Math. Sin. 48 (2005), 919-928 Chinese. MR 2182283 | Zbl 1124.05311
[8] Wang, J., Zhang, X., Liu, G.: Edge covering coloring of nearly bipartite graphs. J. Appl. Math. Comput. 22 (2006), 435-440. DOI 10.1007/BF02896491 | MR 2248471 | Zbl 1114.05042
[9] Xu, C., Jia, Y.: A note on edge-cover coloring of nearly bipartite graphs. Ars Comb. 91 (2009), 423-427. MR 2501981 | Zbl 1224.05465
[10] Zhang, X.: The correlation between the $f$-chromatic class and the $g_c$-chromatic class of a simple graph. Ars Comb. 135 (2017), 17-28. MR 3702241
[11] Zhang, X.: Vertex splitting for determining the $f$-chromatic class of simple graphs. Submitted.
Partner of
EuDML logo