[3] Eremin, I. I., Mazurov, V. D., Astafev, N. N.:
Linear Inequalities in mathematical programming and pattern recognition. Ukr. Math. J. 40 (1988), 3, 243-251. Translated from Ukr. Mat. Zh. 40 (1988), 3, 288-297.
DOI 10.1007/bf01061299 |
MR 0952114
[4] Gad, M.: Optimization problems under one-sided $(\max, \min)$-linear equality constraints. In: WDS'12 Proc. Contributed Papers Part I, 2012, pp. 13-19. 21st Annual Student Conference, Week of Doctoral Students Charles University, Prague 2012.
[5] Gad, M.: Optimization problems under two-sided $(\max, \min)$-linear inequalities constraints. Academic Coordination Centre J. 18 (2012), 4, 84-92. In: International Conference Presentation of Mathematics Conference ICPM'12, Liberec 2012.
[6] Gad, M., Jablonský, J., Zimmermann, K.: Incorrectly posed optimization problems under extremally linear equation constraints. In: Proc. 34th International Conference of Mathematical Methods in Economics MME 2016, Liberec 2016, pp. 231-236.
[7] Gavalec, M., Gad, M., Zimmermann, K.:
Optimization problems under $(\max, \min)$-linear equations and / or inequality constraints. J. Math. Sci. 193 (2013), 5, 645-658. Translated from Russian Journal Fundamentalnaya i Prikladnaya Matematika(Fundamental and Applied Mathematics) 17 (2012), 6, 3-21.
DOI 10.1007/s10958-013-1492-5
[8] Zimmernann, K.: Extremální algebra (in Czech). Ekon. ústav ČSAV, Praha 1976.
[9] Zimmermann, K., Gad, M.: Optimization problems under one-sided $(\max, +)$-linear constraints. In: Conference Presentation of Mathematics ICPM'11, Liberec 2011, pp. 159-165.