[1] Atkinson, K. E.:
An Introduction to Numerical Analysis. Second edition. John Wiley and Sons, Inc., New York 1989.
MR 1007135
[2] Baglama, J., Calvetti, D., Reichel, L.:
Iterative methods for the computation of a few eigenvalues of a large symmetric matrix. BIT 36 (1996), 3, 400-421.
DOI 10.1007/bf01731924 |
MR 1410088
[3] Baglama, J., Calvetti, D., Reichel, L.:
Fast Leja points. ETNA, Electron. Trans. Numer. Anal. 7 (1998), 124-140.
MR 1667643
[6] Boor, C. de:
A Practical Guide to Splines. Revised edition. Springer-Verlag, Inc., New York 2001.
MR 1900298
[8] Gautschi, W.:
Numerical Analysis. An Introduction. Birkhäuser, Boston 1997.
MR 1454125
[9] Higham, N. J.:
Stability analysis of algorithms for solving confluent Vandermonde-like systems. SIAM J. Matrix Anal. Appl. 11 (1990), 1, 23-41.
DOI 10.1137/0611002 |
MR 1032215
[10] Horner, W. G.:
A new method of solving numerical equations of all orders, by continuous approximation. In: Philosophical Transactions of the Royal Society of London, 1819, pp. 308-335.
DOI 10.1098/rstl.1819.0023
[11] Natanson, I. P.:
Konstruktive Funktionentheorie. Mathematische Lehrbücher und Monographien. I. Abteilung, Bd. VII., Akademie-Verlag. XIV, 515 S., 2. Abb. (1955), Berlin 1955.
MR 0640867
[13] Runge, C.: Über empirische Funktionen und die Interpolation zwischen äquidistanten Ordinaten. Schlömilch Z. 46 (1901), 224-243.
[14] Tal-Ezer, H.:
High degree polynomial interpolation in Newton form. SIAM J. Sci. Stat. Comput. 12 (1991), 3, 648-667.
DOI 10.1137/0912034 |
MR 1093210
[15] Trefethen, L. N.:
Approximation Theory and Approximation Practice. PA: Society for Industrial and Applied Mathematics (SIAM), Philadelphia 2013.
MR 3012510 |
Zbl 1264.41001