[1] Abbaszadeh, M., Marquez, H. J.:
A generalized framework for robust nonlinear Hinfty filtering of Lipschitz descriptor systems with parametric and nonlinear uncertainties. Automatica 48 (2012), 5, 894-900.
DOI 10.1016/j.automatica.2012.02.033
[2] Agrawal, P., Lim, H.:
Analyses of various control schemes for continuous bioreactors. Advances in Biochemical Engineering/ Biotechnology 30 (1984), 61-90.
DOI 10.1007/bfb0006380
[3] Bastin, G., Gevers, M.:
Stable adaptive observers for nonlinear time-varying systems. IEEE Trans. Automat. Control 33 (1988), 7, 650-658.
DOI 10.1109/9.1273
[6] al., A. R. Bocanegra-Domínguez et: Estudio teórico práctico de la remoción de contaminantes presentes en el río de Los Remedios, Estado de México. Tecnología y Ciencias del Agua 24.2 (2009), 81-91. (In Spanish)
[7] Bornard, G., Celle-Couenne, F., Gilles, G.:
Observability and Observers. In: Nonlinear Systems - T.1, ‘Modeling and Estimation’. Chapman and Hall, London 1995, pp. 173-216.
DOI 10.1007/978-1-4615-2047-4_6 |
MR 1359309
[9] Diop, S., Fliess, M.:
Nonlinear observability, identifiability, and persistent trajectories. In: Proc. 30th IEEE Conference on Decision and Control 1 (1991), pp. 714-719.
DOI 10.1109/cdc.1991.261405
[10] Efimov, D., Fridman, L.:
Global sliding-mode observer with adjusted gains for locally Lipschitz systems. Automatica 47 (2011), 3, 565-570.
DOI 10.1016/j.automatica.2010.12.003
[11] Farza, M., Bouraou, I., Menard, T., Abdennou, R., M'Saad, M.:
Adaptive observers for a class of uniformly observable systems with nonlinear parametrization and sampled outputs. Automatica 50 (2014), 2951-2960.
DOI 10.1016/j.automatica.2014.10.032 |
MR 3276636
[13] Fridman, L., Shtessel, Y., Edwards, C., Yan, X.:
Higher-order sliding-mode observer for state estimation and input reconstruction in nonlinear systems. Int. J. Robust Nonlinear Control 18 (2008), 399-412.
DOI 10.1002/rnc.1198 |
MR 2392130
[14] Gauthier, J. P., Hammouri, H., Othman, S.:
A simple observer for nonlinear systems applications to bioreactors. IEEE Trans. Automat. Control 37 (1991), 875-880.
DOI 10.1109/9.256352 |
Zbl 0775.93020
[15] Gerd, L., Narendra, K.:
An adaptive observer and identifier for a linear system. IEEE Trans. Automat. Control 18 (1973), 5, 496-499.
DOI 10.1109/tac.1973.1100369
[16] Guoping, L., Ho, D:
Full-order and reduced-order observers for Lipschitz descriptor systems: the unified LMI approach. IEEE Trans. Circuits Systems II: Express Briefs 53 (2006), 7, 563-567.
DOI 10.1109/tcsii.2006.875332
[18] Hermann, R., Krener, A.:
Nonlinear controllability and observability. IEEE Trans. Automat. Control 22 (1977), 5, 728-740.
DOI 10.1109/tac.1977.1101601
[19] Hamid-Reza, K., Zapateiro, M., Luo, N.:
A linear matrix inequality approach to robust fault detection filter design of linear systems with mixed time-varying delays and nonlinear perturbations. J. Franklin Inst. 347 (2010), 6, 957-973.
DOI 10.1016/j.jfranklin.2010.03.004
[20] Karimi, H. R., Zapateiro, M., N., Luo:
A linear matrix inequality approach to robust fault detection filter design of linear systems with mixed time-varying delays and nonlinear perturbations. J. Franklin Inst. 347 (2010), 6, 957-973.
DOI 10.1016/j.jfranklin.2010.03.004 |
MR 2653874
[21] Khalil, H.: Nonlinear Systems. Third edition. Prentice Hall, Englewood Cliffs, NJ 2002.
[22] Khosrowjerdi, M. J.:
Mixed H2/Hinfty approach to fault-tolerant controller design for Lipschitz non-linear systems. IET Control Theory A. 5 (2011), 2, 299-307.
DOI 10.1049/iet-cta.2009.0556
[24] Lafon, F., Busvelle, E., Gauthier, J. P.:
An adaptive high-gain observer for wastewater treatment systems. Journal Process Control 21 (2011), 893-900.
DOI 10.1016/j.jprocont.2011.03.006
[25] Liang, X., Jiangfeng, Z., Xiaohua, X.:
Adaptive synchronization for generalized Lorenz systems. IEEE Trans. Automat. Control 53 (2008), 7, 1740-1746.
DOI 10.1109/tac.2008.928318 |
MR 2446392
[26] al., F. Mairet et:
Modelling neutral lipid production by the microalga Isochrysis aff. galbana under nitrogen limitation. Bioresource Technol. 102.1 (2011), 142-149.
DOI 10.1016/j.biortech.2010.06.138
[27] Marino, R., Tomei, P.: Nonlinear Control Design. Geometric, Adaptive and Robust Approach. Prentice Hall, Englewood Cliffs, NJ 1995.
[28] Marino, R., Tomei, P.:
Adaptive observers with arbitrary exponential rate of convergence for nonlinear systems. IEEE Trans. Automat. Control 40 (1995), 7, 1300-1304.
DOI 10.1109/9.400471 |
MR 1344052
[31] Rodríguez-Mata, A., Torres-Muñoz, J., Domínguez, A. R., Hernandez-Villagran, D., Čelikovský, S.:
Nonlinear high-gain observers with integral action: Application to bioreactors. In: Proc. 8th International Conference on Electrical Engineering, Computing Science and Automatic Control, Cancun 2011, pp. 444-449.
DOI 10.1109/iceee.2011.6106611
[32] Sanchez-Torres, J., Loukianov, G., Moreno, J., Drakunov, S. V.: An equivalent control based sliding mode observer using high order uniform robust sliding operators. In: Proc. American Control Conference, Montreal 2012, pp. 6160-6165.
[33] Travieso, L., Sánchez, E., Bora, R.:
Evaluation of laboratory and full-scale microalgae pond for tertiary treament of piggery wastes. Enviromental Technol. 25 (2004), 565-576.
DOI 10.1080/09593330.2004.9619347
[34] Wu, H.:
A class of adaptive robust state observers with simpler structure for uncertain non linear systems with time varying delays. IET Control Theory Appl. 7 (2013), 218-222.
DOI 10.1049/iet-cta.2012.0318
[35] Yong-Hong, L., Zhou, Y.:
Non-fragile observer-based robust control for a class of fractional-order nonlinear systems. Systems Control Lett. 62 (2013), 12, 1143-1150.
DOI 10.1016/j.sysconle.2013.09.007
[36] Zhang, Q.:
Adaptive observer for multiple-input-multiple-output (mimo) linear time-varying systems. IEEE Trans. Automat. Control 47 (2002), 3, 525-529.
DOI 10.1109/9.989154