[1] Alanis, A. Y., Ricalde, L. J., Simetti, C., Odone, F.:
Neural model with particle swarm optimization Kalman learning for forecasting in smart grids. Math. Problems Engrg. (2013), 9 pages.
DOI 10.1155/2013/197690
[2] Alanis, A. Y., Sanchez, E. N., Loukianov, A. G.: A wind speed neural model with particle swarm optimization Kalman learning. In: International Joint Conference on Neural Networks 2006, pp. 1993-2000.
[3] Alanis, A. Y., Simetti, C., Ricalde, L. J., Odone, F.:
A wind speed neural model with particle swarm optimization Kalman learning. In: World Automation Congress 2012, pp. 1-5.
MR 3063031
[4] Astrom, K. J., Wittenmark, B.: Adaptive Control. Second edition. Addison-Wesley Longman Publishing Co., Inc., Boston (1994).
[5] Bifet, A., Gavalda, R.:
Kalman filters and adaptive windows for learning in data streams. In: Discovery Science (L. Todorovski, N. Lavrac, K. P. Jantke, eds.), Lecture Notes in Computer Science 4265 (2006), pp. 29-40, Springer, Berlin, Heidelberg.
DOI 10.1007/11893318
[6] Čelikovský, S.:
Topological equivalence and topological linearization of controlled dynamical systems. Kybernetika 31 (1995), 141-150.
MR 1334506
[7] Cerrada, M., Li, C., Sanchez, R. V., Pacheco, F., Cabrera, D., Valente, J.:
A fuzzy transition based approach for fault severity prediction in helical gearboxes. Fuzzy Sets and Systems 337 (2018), 52-73.
DOI 10.1016/j.fss.2016.12.017 |
MR 3766926
[9] Coelho, J. K., Pena, M.\.D., Romero, O. J.:
Pore-scale modeling of oil mobilization trapped in a square cavity. IEEE Latin Amer. Trans. 14 (2016), 4, 1800-1807.
DOI 10.1109/tla.2016.7483518
[10] Deng, Z., Wang, X., Hong, Y.:
Distributed optimisation design with triggers for disturbed continuous-time multi-agent systems. IET Control Theory Appl. 11 (2017), 2, 282-290.
DOI 10.1049/iet-cta.2016.0795 |
MR 3675134
[11] Dolinský, K., Čelikovský, S.:
Kalman filter under nonlinear system transformations. In: American Control Conference 2012, pp. 4789-4794.
DOI 10.1109/acc.2012.6315366
[12] Guo, S. M., Shieh, L. S., Chen, G., Coleman, N. P.:
Observer-type Kalman innovation filter for uncertain linear systems. IEEE Trans. Aerospace Eelectron. Systems 37 (2001), 4, 1406-1418.
DOI 10.1109/7.976975
[13] E.Guillermo, J., Castellanos, L. J. Ricalde, Sanchez, E. N., Alanis, A. Y.:
Detection of heart murmurs based on radial wavelet neural network with Kalman learning. Neurocomputing 164 (2015), 307-317.
DOI 10.1016/j.neucom.2014.12.059
[14] Hernandez-Vargas, E. A., Colaneri, P., Middleton, R. H.:
Switching strategies to mitigate HIV mutation. IEEE Trans. Control Systems Technol. 22 (2014), 4, 1623-1628.
DOI 10.1109/tcst.2013.2280920
[16] Kalman, R. E.:
A New approach to linear filtering and prediction problems. Trans. ASME, J. Basic Engrg. 82 (1960), 35-45.
DOI 10.1115/1.3662552
[17] Khemchandani, R., Pal, A., Chandra, S.:
Fuzzy least squares twin support vector clustering. Neural Computing Appl. 29 (2018), 553-563.
DOI 10.1007/s00521-016-2468-4
[18] Lizasoain, I., Gomez, M.:
Products of lattice-valued fuzzy transition systems and induced fuzzy transformation semigroups. Fuzzy Sets and Systems 317 (2017), 133-150.
DOI 10.1016/j.fss.2017.01.006
[19] Liu, F., Zhao, R., Tan, T., Zhang, Q.:
Existence and verification for decentralized nondeterministic discrete-event systems under bisimulation equivalence. Asian J. Control 18 (2016), 5, 1679-1687.
DOI 10.1002/asjc.1253 |
MR 3564277
[20] Ljung, L.: System Identification: Theory for the User. Prentice Hall PTR, Prentic Hall Inc., Upper Saddle River, New Jersey 1999.
[21] Lughofer, E.: Evolving Fuzzy Systems - Methodologies, Advanced Concepts and Applications. Springer, Berlin, Heidelberg 2011.
[23] Lughofer, E., Weigl, E., Heidl, W., Eitzinger, C., Radauer, T.:
Recognizing input space and target concept drifts in data streams with scarcely labeled and unlabelled instances. Inform. Sci. 355-356 (2016), 127-151.
DOI 10.1016/j.ins.2016.03.034
[24] Mansouri, I., Gholampour, A., Kisi, O., Ozbakkaloglu, T.:
Evaluation of peak and residual conditions of actively confined concrete using neuro-fuzzy and neural computing techniques. Neural Computing Appl. 29 (2018), 873-888.
DOI 10.1007/s00521-016-2492-4
[25] Nguyen, V. K., Klawonn, F., Mikolajczyk, R., Hernandez-Vargas, E. A.:
Analysis of practical identifiability of a viral infection model. Plos One (2016), 1-16.
DOI 10.1371/journal.pone.0167568
[26] Pratama, M., Lu, J., Anavatti, S., Lughofer, E., Lim, C. P.:
An incremental meta-cognitive-based scaffolding fuzzy neural network. Neurocomputing 171 (2016), 89-105.
DOI 10.1016/j.neucom.2015.06.022
[29] Rubio, J. J.:
Stable Kalman filter and neural network for the chaotic systems identification. J. Franklin Inst. 354 (2017), 7444-7462.
DOI 10.1016/j.jfranklin.2017.08.038
[30] Rubio, J. J.:
SOFMLS: Online self-organizing fuzzy modified least square network. IEEE Trans. Fuzzy Systems 17 (2009), 6, 1296-1309.
DOI 10.1109/tfuzz.2009.2029569
[31] Sanchez, E. N., Alanis, A. Y., Rico, J.:
Electric load demand prediction using neural networks trained by Kalman filtering. In: IEEE International Conference on Neural Networks 2004, pp. 2111-2775.
DOI 10.1109/ijcnn.2004.1381093
[32] Sun, X. M., Wang, X. F., Hong, Y., Xia, W.:
Stabilization control design with parallel-triggering mechanism. IEEE Trans. Industr. Electron. 64 (2017), 3260-3267.
DOI 10.1109/tie.2016.2637888
[35] Wu, H., Deng, Y.:
Distribution-based behavioural distance for nondeterministic fuzzy transition systems. IEEE Trans. Fuzzy Systems 99 (2017), 1-1.
DOI 10.1109/tfuzz.2017.2670605
[36] Wu, H., Chen, Y., Bu, T., Deng, Y.:
Algorithmic and logical characterizations of bisimulations for non-deterministic fuzzy transition systems. Fuzzy Sets and Systems 333 (2017), 106-123.
DOI 10.1016/j.fss.2017.02.008 |
MR 3739684
[37] Xu, D., Wang, X., Hong, Y., Jiang, Z. P.:
Global robust distributed output consensus of multi-agent nonlinear systems: an internal model approach. Systems Control Lett. 87 (2016), 64-69.
DOI 10.1016/j.sysconle.2015.11.002 |
MR 3433242