Previous |  Up |  Next

Article

Keywords:
relatively pseudocomplemented poset; join-semilattice; distributive poset
Summary:
We extend the notion of a relatively pseudocomplemented meet-semilattice to arbitrary posets. We show some properties of the binary operation of relative pseudocomplementation and provide some corresponding characterizations. We show that relatively pseudocomplemented posets satisfying a certain simple identity in two variables are join-semilattices. Finally, we show that every relatively pseudocomplemented poset is distributive and that the converse holds for posets satisfying the ascending chain condition and one more natural condition. Suitable examples are provided.
References:
[1] Balbes, R.: On free pseudo-complemented and relatively pseudo-complemented semi-lattices. Fundam. Math. 78 (1973), 119-131. DOI 10.4064/fm-78-2-119-131 | MR 0319832 | Zbl 0277.06001
[2] Chajda, I.: An extension of relative pseudocomplementation to non-distributive lattices. Acta Sci. Math. 69 (2003), 491-496. MR 2034188 | Zbl 1048.06005
[3] Chajda, I.: Relatively pseudocomplemented directoids. Commentat. Math. Univ. Carol. 50 (2009), 349-357. MR 2573409 | Zbl 1212.06004
[4] Chajda, I.: Pseudocomplemented and Stone posets. Acta Univ. Palacki. Olomuc., Fac. Rerum Nat., Math. 51 (2012), 29-34. MR 3060006 | Zbl 1302.06001
[5] Chajda, I., Halaš, R., Kühr, J.: Semilattice Structures. Research and Exposition in Mathematics 30. Heldermann, Lemgo (2007). MR 2326262 | Zbl 1117.06001
[6] Chajda, I., Kolařík, M., Švrček, F.: Properties of relatively pseudocomplemented directoids. Math. Bohem. 136 (2011), 9-23. MR 2807704 | Zbl 1224.06006
[7] Chajda, I., Länger, H.: Directoids. An Algebraic Approach to Ordered Sets. Research and Exposition in Mathematics 32. Heldermann, Lemgo (2011). MR 2850357 | Zbl 1254.06002
[8] Chajda, I., Rachůnek, J.: Forbidden configurations for distributive and modular ordered sets. Order 5 (1989), 407-423. DOI 10.1007/BF00353659 | MR 1010389 | Zbl 0674.06003
[9] C\=ırulis, J.: Implication in sectionally pseudocomplemented posets. Acta Sci. Math. 74 (2008), 477-491. MR 2487926 | Zbl 1199.03059
[10] Köhler, P.: Brouwerian semilattices. Trans. AMS 268 (1981), 103-126. DOI 10.2307/1998339 | MR 0628448 | Zbl 0473.06003
[11] Larmerová, J., Rachůnek, J.: Translations of distributive and modular ordered sets. Acta Univ. Palacki. Olomuc., Fac. Rerum Nat., Math. 27 (1988), 13-23. MR 1039879 | Zbl 0693.06003
[12] Nemitz, W. C.: Implicative semi-lattices. Trans. AMS 117 (1965), 128-142. DOI 10.2307/1994200 | MR 0176944 | Zbl 0674.06003
[13] Venkatanarasimhan, P. V.: Pseudo-complements in posets. Proc. AMS 28 (1971), 9-17. DOI 10.2307/2037746 | MR 0272687 | Zbl 0218.06002
Partner of
EuDML logo