Previous |  Up |  Next

Article

Keywords:
oscillation; nonlinear; delay; neutral functional difference equation
Summary:
In this work, oscillatory behaviour of solutions of a class of fourth-order neutral functional difference equations of the form \begin {equation*} \Delta ^{2}(r(n)\Delta ^{2}(y(n)+p(n)y(n-m)))+ q(n)G(y(n-k))=0 \end {equation*} is studied under the assumption \begin {equation*} \sum _{n=0}^{\infty }\frac {n}{r(n)}< \infty . \end {equation*} New oscillation criteria have been established which generalize some of the existing results in the literature.
References:
[1] Agarwal, R. P.: Difference Equations and Inequalities: Theory, Methods, and Applications. Pure and Applied Mathematics 228. Marcel Dekker, New York (2000). MR 1740241 | Zbl 0952.39001
[2] Agarwal, R. P., Grace, S. R., Wong, P. J. Y.: Oscillation of fourth order nonlinear difference equations. Int. J. Difference Equ. 2 (2007), 123-137. MR 2493593
[3] Bohner, M., Peterson, A.: Dynamic Equations on Time Scales: An Introduction with Applications. Birkhäuser, Basel (2001). DOI 10.1007/978-1-4612-0201-1 | MR 1843232 | Zbl 0978.39001
[4] Bohner, M., Peterson, A.: Advances in Dynamic Equations on Time Scales. Birkhäuser, Boston (2003). DOI 10.1007/978-0-8176-8230-9 | MR 1962542 | Zbl 1025.34001
[5] Graef, J. R., Miciano, A., Spikes, P., Sundaram, P., Thandapani, E.: Oscillatory and asymptotic behaviour of solutions of nonlinear neutral-type difference equations. J. Aust. Math. Soc., Ser. B 38 (1996), 163-171. DOI 10.1017/S0334270000000552 | MR 1414357 | Zbl 0890.39018
[6] Graef, J. R., Thandapani, E.: Oscillatory and asymptotic behaviour of fourth order nonlinear delay difference equations. Fasc. Math. 31 (2001), 23-36. MR 1860547 | Zbl 1009.39007
[7] Gyori, I., Ladas, G.: Oscillation Theory for Delay Differential Equations with Applications. Oxford Mathematical Monographs. Clarendon Press, Oxford (1991). MR 1168471 | Zbl 0780.34048
[8] Migda, M.: Asymptotic properties of nonoscillatory solutions of higher order neutral difference equations. Opusc. Math. 26 (2006), 507-514. MR 2280277 | Zbl 1131.39008
[9] Migda, M., Migda, J.: Oscillatory and asymptotic properties of solutions of even order neutral difference equations. J. Difference Equ. Appl. 15 (2009), 1077-1084. DOI 10.1080/10236190903032708 | MR 2569136 | Zbl 1194.39009
[10] Parhi, N., Tripathy, A. K.: Oscillation of a class of nonlinear neutral difference equations of higher order. J. Math. Anal. Appl. 284 (2003), 756-774. DOI 10.1016/S0022-247X(03)00298-1 | MR 1998666 | Zbl 1037.39002
[11] Thandapani, E., Arockiasamy, I. M.: Oscillatory and asymptotic behaviour of fourth order nonlinear neutral delay difference equations. Indian J. Pure Appl. Math. 32 (2001), 109-123. MR 1819234 | Zbl 1004.39005
[12] Thandapani, E., Sundaram, P., Graef, J. R., Miciano, A., Spikes, P.: Classification of non-oscillatory solutions of higher order neutral type difference equations. Arch. Math. (Brno) 31 (1995), 263-277. MR 1390585 | Zbl 0855.39014
[13] Tripathy, A. K.: Oscillation of fourth-order nonlinear neutral difference equations II. Math. Slovaca 58 (2008), 581-604. MR 2434679 | Zbl 1199.39018
[14] Tripathy, A. K.: New oscillation criteria for fourth order nonlinear neutral difference equations. Adv. Dyn. Syst. Appl 8 (2013), 387-399. MR 3162156
Partner of
EuDML logo