Previous |  Up |  Next

Article

Keywords:
annihilating-ideal graph; lattice; line graph; planar graph; projective graph
Summary:
Let $(L,\wedge ,\vee )$ be a finite lattice with a least element 0. $\mathbb {A} G(L)$ is an annihilating-ideal graph of $L$ in which the vertex set is the set of all nontrivial ideals of $L$, and two distinct vertices $I$ and $J$ are adjacent if and only if $I \wedge J=0$. We completely characterize all finite lattices $L$ whose line graph associated to an annihilating-ideal graph, denoted by $\mathfrak {L}(\mathbb {A} G(L))$, is a planar or projective graph.
References:
[1] Afkhami, M., Bahrami, S., Khashyarmanesh, K., Shahsavar, F.: The annihilating-ideal graph of a lattice. Georgian Math. J. 23 (2016), 1-7. DOI 10.1515/gmj-2015-0031 | MR 3466579 | Zbl 1332.05067
[2] Anderson, D. F., Axtell, M. C., Stickles, J. A.: Zero-divisor graphs in commutative rings. Commutative Algebra, Noetherian and Non-Noetherian Perspectives M. Fontana et al. Springer, New York (2011), 23-45. DOI 10.1007/978-1-4419-6990-3_2 | MR 2762487 | Zbl 1225.13002
[3] Archdeacon, D.: A Kuratowski theorem for the projective plane. J. Graph Theory 5 (1981), 243-246. DOI 10.1002/jgt.3190050305 | MR 0625065 | Zbl 0464.05028
[4] Beck, I.: Coloring of commutative rings. J. Algebra 116 (1988), 208-226. DOI 10.1016/0021-8693(88)90202-5 | MR 0944156 | Zbl 0654.13001
[5] Behboodi, M., Rakeei, Z.: The annihilating-ideal graph of commutative rings I. J. Algebra Appl. 10 (2011), 727-739. DOI 10.1142/S0219498811004896 | MR 2834112 | Zbl 1276.13002
[6] Behboodi, M., Rakeei, Z.: The annihilating-ideal graph of commutative rings II. J. Algebra Appl. 10 (2011), 741-753. DOI 10.1142/S0219498811004902 | MR 2834113 | Zbl 1276.13003
[7] Bondy, J. A., Murty, U. S. R.: Graph Theory with Applications. American Elsevier Publishing, New York (1976). DOI 10.1007/978-1-349-03521-2 | MR 0411988 | Zbl 1226.05083
[8] Bouchet, A.: Orientable and nonorientable genus of the complete bipartite graph. J. Comb. Theory, Ser. B 24 (1978), 24-33. DOI 10.1016/0095-8956(78)90073-4 | MR 0479731 | Zbl 0311.05104
[9] Chiang-Hsieh, H.-J., Lee, P.-F., Wang, H.-J.: The embedding of line graphs associated to the zero-divisor graphs of commutative rings. Isr. J. Math. 180 (2010), 193-222. DOI 10.1007/s11856-010-0101-2 | MR 2735063 | Zbl 1207.13005
[10] Davey, B. A., Priestley, H. A.: Introduction to Lattices and Order. Cambridge University Press, Cambridge (2002). DOI 10.1017/CBO9780511809088 | MR 1902334 | Zbl 1002.06001
[11] Glover, H. H., Huneke, J. P., Wang, C. S.: 103 graphs that are irreducible for the projective plane. J. Comb. Theory, Ser. B 27 (1979), 332-370. DOI 10.1016/0095-8956(79)90022-4 | MR 0554298 | Zbl 0352.05027
[12] Godsil, C., Royle, G.: Algebraic Graph Theory. Graduate Texts in Mathematics 207, Springer, New York (2001). DOI 10.1007/978-1-4613-0163-9 | MR 1829620 | Zbl 0968.05002
[13] Khashyarmanesh, K., Khorsandi, M. R.: Projective total graphs of commutative rings. Rocky Mt. J. Math. 43 (2013), 1207-1213. DOI 10.1216/RMJ-2013-43-4-1207 | MR 3105318 | Zbl 1284.13034
[14] Massey, W. S.: Algebraic Topology: An Introduction. Graduate Texts in Mathematics 56, Springer, New York (1977). MR 0448331 | Zbl 0361.55002
[15] Nation, J. B.: Notes on Lattice Theory. (1991)--2009. Available at http://www.math.hawaii.edu/ {jb/books.html}.
[16] Ringel, G.: Map Color Theorem. Die Grundlehren der mathematischen Wissenschaften 209, Springer, Berlin (1974). DOI 10.1007/978-3-642-65759-7 | MR 0349461 | Zbl 0287.05102
[17] Roth, J., Myrvold, W.: Simpler projective plane embedding. Ars Comb. 75 (2005), 135-155. MR 2133216 | Zbl 1072.05045
[18] Sedláček, J.: Some properties of interchange graphs. Theory Graphs Appl Proc. Symp. Smolenice, 1963, Czechoslovak Acad. Sci., Praha (1964), 145-150. MR 0173255 | Zbl 0156.44202
[19] White, A. T.: Graphs, Groups and Surfaces. North-Holland Mathematics Studies 8, North-Holland Publishing, Amsterdam-London; American Elsevier Publishing, New York (1973). MR 0340026 | Zbl 0268.05102
Partner of
EuDML logo