Summary: In the study, we introduce the definition of a locally internal uninorm on an arbitrary bounded lattice $L$. We examine some properties of an idempotent and locally internal uninorm on an arbitrary bounded latice $L$, and investigate relationship between these operators. Moreover, some illustrative examples are added to show the connection between idempotent and locally internal uninorm.
[1] Aşıcı, E., Karaçal, F.: Incomparability with respect to the triangular order. Kybernetika 52 (2016), 15-27. DOI 10.14736/kyb-2016-1-0015 | MR 3482608
[4] Baets, B. De, Fodor, J.: A single-point characterization of representable uninorms. Fuzzy Sets Syst. 202 (2012), 89-99. DOI 10.1016/j.fss.2011.12.001 | MR 2934788
[5] Çaylı, G. D., Karaçal, F., Mesiar, R.: On a new class of uninorms on bounded lattices. Inform. Sci. 367-368 (2016), 221-231. DOI 10.1016/j.ins.2016.05.036 | MR 3684677
[6] Çaylı, G. D., Drygaś, P.: Some properties of idempotent uninorms on bounded lattices. Inform. Sci. 422 (2018), 352-363. DOI 10.1016/j.ins.2017.09.018 | MR 3709474
[7] Drewniak, J., Drygaś, P.: On a class of uninorms. Int. J. Uncertain. Fuzziness Knowl.-Based Syst. 10 (2002), 5-10. DOI 10.1142/s021848850200179x | MR 1962665
[9] Drygaś, P., Ruiz-Aguilera, D., Torrens, J.: A characterization of uninorms locally internal in $A(e)$ with continuous underlying operators. Fuzzy Sets Syst. 287 (2016), 137-153. DOI 10.1016/j.fss.2009.09.017 | MR 3447023
[10] Ertuğrul, Ü., Kesicioğlu, M. N., Karaçal, F.: Ordering based on uninorms. Inform. Sci. 330 (2016), 315-327. DOI 10.1016/j.ins.2015.10.019
[13] Kesicioğlu, M. N., Ertuğrul, Ü., Karaçal, F.: An equivalence relation based on the U-partial order. Inform. Sci. 411 (2017), 39-51. DOI 10.1016/j.ins.2017.05.020 | MR 3659313