[1] Aghababa, M. P.:
Finite-time chaos control and synchronization of fractional-order nonautonomous chaotic (hyperchaotic) systems using fractional nonsingular terminal sliding mode technique. Nonlinear Dynam. 69 (2012), 247-261.
DOI 10.1007/s11071-011-0261-6 |
MR 2929869
[2] Aghababa, M. P., Aghababa, H. P.:
A general nonlinear adaptive control scheme for finite-time synchronization of chaotic systems with uncertain parameters and nonlinear inputs. Nonlinear Dynam. 69 (2012), 1903-1914.
DOI 10.1007/s11071-012-0395-1 |
MR 2945528 |
Zbl 1263.93111
[3] Ahmad, I., Saaban, A. B., Ibrahima, A. B., Shahzadb, M., Naveedca, N.:
The synchronization of chaotic systems with different dimensionals by a robust generalized active control. Optik 127 (2016), 4859-4871.
DOI 10.1016/j.ijleo.2015.12.134
[4] Ahmada, I., Shafiq, M., Saaban, A. B., Ibrahim, A. B., Shahzad, M.:
Robust finite-time global synchronization of chaotic systemswith different orders. Optik 127 (2016), 8172-8185.
DOI 10.1016/j.ijleo.2016.05.065
[6] Boccaletti, S., Kurths, J., Osipov, G., Valladares, D. L., Zhou, C. S.:
The synchronization of chaotic systems. Phys. Rep. 366 (2002), 1-101.
DOI 10.1016/s0370-1573(02)00137-0 |
MR 1913567 |
Zbl 0995.37022
[8] Cai, N., Li, W. Q., Jing, Y. W.:
Finite-time generalized synchronization of chaotic systems with different order. Nonlinear Dynam. 64 (2011), 385-393.
DOI 10.1007/s11071-010-9869-1 |
MR 2803218
[9] Chen, X. Y., Lu, J. F.:
Adaptive synchronization of different chaotic systems with fully unknown parameters. Phys. Lett. A 364 (2007), 123-128.
DOI 10.1016/j.physleta.2006.11.092
[10] Chen, D. Y., Zhang, R. F., Ma, X. Y., Liu, S.:
Chaotic synchronization and anti-synchronization for a novel class of multiple chaotic systems via a sliding mode control scheme. Nonlinear Dynam. 69 (2012), 35-55.
DOI 10.1007/s11071-011-0244-7 |
MR 2929853
[12] Ge, Z. M., Yang, C. H.:
The generalized synchronization of a Quantum-CNN chaotic oscillator with different order systems. Chaos Solitons and Fractals 35 (2008), 980-990.
DOI 10.1016/j.chaos.2006.05.090
[13] Ge, X. H., Yang, F. W., Han, Q. L.:
Distributed networked control systems: A brief overview. Inform. Sciences 380 (2017), 117-131.
DOI 10.1016/j.ins.2015.07.047
[14] Hardy, G. H., Littlewood, J. E., Pólya, G.:
Inequalities. Cambridge At The University Press, Cambridge 1934.
MR 0944909 |
Zbl 0634.26008
[15] Hauschildt, B., Jason, N. B., Balanov, A., Scholl, A.:
Noise-induced cooperative dynamics and its control in coupled neuron models. Phys. Rev. E 74 (2006), 051906.
DOI 10.1103/physreve.74.051906 |
MR 2293732
[16] He, W. L., Chen, G. R., Han, Q. L., Qian, F.:
Network-based leader-following consensus of nonlinear multi-agent systems via distributed impulsive control. Inform. Sciences 380 (2017), 145-158.
DOI 10.1016/j.ins.2015.06.005
[17] He, W. L., Qian, F., Lam, J., Chen, G. R., Han, Q. L., Kurths, J.:
Quasi-synchronization of heterogeneous dynamic networks via distributed impulsive control: Error estimation, optimization and design. Automatica 62 (2015), 249-262.
DOI 10.1016/j.automatica.2015.09.028 |
MR 3423996
[18] He, W. L., Zhang, B., Han, Q. L., Qian, F., Kurths, J., Cao, J. D.: Leader-following consensus of nonlinear multiagent systems with stochastic sampling. IEEE Trans. Cybern. 47 (2017), 327-338.
[19] Huang, D. B.:
Simple adaptive-feedback controller for identical chaos synchronization. Phys. Rev. E. 71 (2005), 037203.
DOI 10.1103/physreve.71.037203
[21] Ke, D., Han, Q. L.:
Master-Slave synchronization criteria for chaotic Hindmarsh-Rose neurons using linear feedback control. Complexity 21 (2016), 319-327.
DOI 10.1002/cplx.21658 |
MR 3508425
[22] Korniss, G.:
Synchronization in weighted unccorrelated complex networks in a noisy environment: optimization and connections with transport efficiency. Phys. Rev. E 75 (2007), 051121.
DOI 10.1103/physreve.75.051121
[26] Ouannas, A., Odibat, Z.:
Generalized synchronization of different dimensional chaotic dynamical systems in discrete time. Nonlinear Dynam. 81 (2015), 765-771.
DOI 10.1007/s11071-015-2026-0 |
MR 3355066
[28] Pikovsky, A., Rosenblum, M., Kurths, J.:
Synchronization: A Universal Concept in Nonlinear Sciences. Cambridge University Press, Cambridge 2001.
DOI 10.1017/cbo9780511755743 |
MR 1869044
[29] Pourmahmood, M., Khanmohammadi, S., Alizadeh, G.:
Synchronization of two different uncertain chaotic systems with unknown parameters using a robust adaptive sliding mode controller. Commun. Nonlinear Sci. Numer. Simulat. 16 (2011), 2853-2868.
DOI 10.1016/j.cnsns.2010.09.038 |
MR 2772300 |
Zbl 1221.93131
[30] Stefanovska, A., Haken, H., McClintock, E., Hožič, M., Bajrović, F., Ribarič, S.:
Reversible transitions between synchronization states of the cardiorespiratory system. Phys. Rev. Lett. 85 (2000), 4831-4834.
DOI 10.1103/physrevlett.85.4831
[31] Sun, Y. Z., Li, W., Zhao, D. H.:
Finite-time stochastic outer synchronization between two complex dynamical networks with different topologies. Chaos 22 (2012), 023152.
DOI 10.1063/1.4731265 |
MR 3388569
[32] Sun, Y. Z., Ruan, J.:
Synchronization in coupled time-delayed systems with parameter mismath and noise perturbation. Chaos 19 (2009), 043113.
DOI 10.1063/1.3262488
[35] Wang, H., Han, Z. Z., Zhang, W.:
Finite-time chaos control of unified chaotic systems with uncertain parameters. Nonlinear Dynam. 55 (2009), 323-328.
DOI 10.1007/s11071-008-9364-0 |
MR 2472222
[36] Wu, J., Ma, Z. C., Sun, Y. Z., Liu, F.:
Finite-time synchronization of chaotic systems with noise perturbation. Kybernetika 54 (2015), 137-149.
DOI 10.14736/kyb-2015-1-0137 |
MR 3333837
[37] Yan, J. J., Hung, M. L., Chang, T. Y., Yang, Y. S.:
Robust synchronization of chaotic systems via adaptive sliding mode control. Phys. Lett. A 356 (2006), 220-225.
DOI 10.1016/j.physleta.2006.03.047
[40] Zhang, X. M., Han, Q. L., Yu, X. H.:
Survey on recent advances in networked control systems. IEEE Trans. Ind. Informat. 12 (2016), 1740-1752.
DOI 10.1109/tii.2015.2506545
[41] Zhang, G., Liu, Z. R., Ma, Z. J.:
Generalized synchronization of different dimensional chaotic dynamical systems. Chaos Solitons and Fractals 32 (2007), 773-779.
DOI 10.1016/j.chaos.2005.11.099 |
MR 2280118
[42] Zhou, X. B., Jiang, M. R., Huang, Y. Q.:
Switched modified function projective synchronization between two complex nonlinear hyperchaotic systems based on adaptive control and parameter identification. Kybernetika 50 (2014), 632-642.
DOI 10.14736/kyb-2014-4-0632 |
MR 3275089 |
Zbl 1311.34120