Previous |  Up |  Next

Article

Keywords:
finite-time synchronization; different dimensional chaotic systems; adaptive control; noise perturbation
Summary:
This paper is further concerned with the finite-time generalized outer synchronization between two different dimensional chaotic systems with noise perturbation via an adaptive controller. First of all, we introduce the definition of finite-time generalized outer synchronization between two different dimensional chaotic systems. Then, employing the finite-time stability theory, we design an adaptive feedback controller to realize the generalized outer synchronization between two different dimensional chaotic systems within a finite time. Moreover, we analyze the influence of control parameter on the synchronous speed. Finally, two typical examples are examined to illustrate the effectiveness and feasibility of the theoretical result.
References:
[1] Aghababa, M. P.: Finite-time chaos control and synchronization of fractional-order nonautonomous chaotic (hyperchaotic) systems using fractional nonsingular terminal sliding mode technique. Nonlinear Dynam. 69 (2012), 247-261. DOI 10.1007/s11071-011-0261-6 | MR 2929869
[2] Aghababa, M. P., Aghababa, H. P.: A general nonlinear adaptive control scheme for finite-time synchronization of chaotic systems with uncertain parameters and nonlinear inputs. Nonlinear Dynam. 69 (2012), 1903-1914. DOI 10.1007/s11071-012-0395-1 | MR 2945528 | Zbl 1263.93111
[3] Ahmad, I., Saaban, A. B., Ibrahima, A. B., Shahzadb, M., Naveedca, N.: The synchronization of chaotic systems with different dimensionals by a robust generalized active control. Optik 127 (2016), 4859-4871. DOI 10.1016/j.ijleo.2015.12.134
[4] Ahmada, I., Shafiq, M., Saaban, A. B., Ibrahim, A. B., Shahzad, M.: Robust finite-time global synchronization of chaotic systemswith different orders. Optik 127 (2016), 8172-8185. DOI 10.1016/j.ijleo.2016.05.065
[5] Bhat, S. P., Bernstein, D. S.: Finite-time stability of continuous autonomous systems. SIAM J. Control Optim. 38 (2000), 751-766. DOI 10.1137/s0363012997321358 | MR 1756893 | Zbl 0945.34039
[6] Boccaletti, S., Kurths, J., Osipov, G., Valladares, D. L., Zhou, C. S.: The synchronization of chaotic systems. Phys. Rep. 366 (2002), 1-101. DOI 10.1016/s0370-1573(02)00137-0 | MR 1913567 | Zbl 0995.37022
[7] Bowong, S., Kakmeni, M., Koina, R.: Chaos synchronization and duration time of a class of uncertain chaotic systems. Math. Comput. Simulat. 71 (2006), 212-228. DOI 10.1016/j.matcom.2006.01.006 | MR 2222398
[8] Cai, N., Li, W. Q., Jing, Y. W.: Finite-time generalized synchronization of chaotic systems with different order. Nonlinear Dynam. 64 (2011), 385-393. DOI 10.1007/s11071-010-9869-1 | MR 2803218
[9] Chen, X. Y., Lu, J. F.: Adaptive synchronization of different chaotic systems with fully unknown parameters. Phys. Lett. A 364 (2007), 123-128. DOI 10.1016/j.physleta.2006.11.092
[10] Chen, D. Y., Zhang, R. F., Ma, X. Y., Liu, S.: Chaotic synchronization and anti-synchronization for a novel class of multiple chaotic systems via a sliding mode control scheme. Nonlinear Dynam. 69 (2012), 35-55. DOI 10.1007/s11071-011-0244-7 | MR 2929853
[11] Erban, R., Haskovec, J., Sun, Y.: A Cucker-Smale model with noise and delay. SIAM J. Appl. Math. 76 (2016), 1535-1557. DOI 10.1137/15m1030467 | MR 3534479
[12] Ge, Z. M., Yang, C. H.: The generalized synchronization of a Quantum-CNN chaotic oscillator with different order systems. Chaos Solitons and Fractals 35 (2008), 980-990. DOI 10.1016/j.chaos.2006.05.090
[13] Ge, X. H., Yang, F. W., Han, Q. L.: Distributed networked control systems: A brief overview. Inform. Sciences 380 (2017), 117-131. DOI 10.1016/j.ins.2015.07.047
[14] Hardy, G. H., Littlewood, J. E., Pólya, G.: Inequalities. Cambridge At The University Press, Cambridge 1934. MR 0944909 | Zbl 0634.26008
[15] Hauschildt, B., Jason, N. B., Balanov, A., Scholl, A.: Noise-induced cooperative dynamics and its control in coupled neuron models. Phys. Rev. E 74 (2006), 051906. DOI 10.1103/physreve.74.051906 | MR 2293732
[16] He, W. L., Chen, G. R., Han, Q. L., Qian, F.: Network-based leader-following consensus of nonlinear multi-agent systems via distributed impulsive control. Inform. Sciences 380 (2017), 145-158. DOI 10.1016/j.ins.2015.06.005
[17] He, W. L., Qian, F., Lam, J., Chen, G. R., Han, Q. L., Kurths, J.: Quasi-synchronization of heterogeneous dynamic networks via distributed impulsive control: Error estimation, optimization and design. Automatica 62 (2015), 249-262. DOI 10.1016/j.automatica.2015.09.028 | MR 3423996
[18] He, W. L., Zhang, B., Han, Q. L., Qian, F., Kurths, J., Cao, J. D.: Leader-following consensus of nonlinear multiagent systems with stochastic sampling. IEEE Trans. Cybern. 47 (2017), 327-338.
[19] Huang, D. B.: Simple adaptive-feedback controller for identical chaos synchronization. Phys. Rev. E. 71 (2005), 037203. DOI 10.1103/physreve.71.037203
[20] Ke, D., Han, Q. L.: Synchronization of two coupled Hindmarsh-Rose neurons. Kybernetika 51 (2015), 784-799. DOI 10.14736/kyb-2015-5-0784 | MR 3445984
[21] Ke, D., Han, Q. L.: Master-Slave synchronization criteria for chaotic Hindmarsh-Rose neurons using linear feedback control. Complexity 21 (2016), 319-327. DOI 10.1002/cplx.21658 | MR 3508425
[22] Korniss, G.: Synchronization in weighted unccorrelated complex networks in a noisy environment: optimization and connections with transport efficiency. Phys. Rev. E 75 (2007), 051121. DOI 10.1103/physreve.75.051121
[23] Li, S. H., Tian, Y. P.: Finite-time synchronization of chaotic systems. Chaos Solitons and Fractals 15 (2003), 303-310. DOI 10.1016/s0960-0779(02)00100-5 | MR 1926750
[24] Lin, W., Chen, G. R.: Using white noise to enhance synchronization of coupled chaotic systems. Chaos 16 (2006), 013134. DOI 10.1063/1.2183734 | MR 2220550 | Zbl 1144.37375
[25] Lin, J. S., Yan, J. J.: Adaptive synchronization for two identical generalized Lorenz chaotic systems via a single controller. Nonlinear Anal. RWA 10 (2009), 1151-1159. DOI 10.1016/j.nonrwa.2007.12.005 | MR 2474288 | Zbl 1167.37329
[26] Ouannas, A., Odibat, Z.: Generalized synchronization of different dimensional chaotic dynamical systems in discrete time. Nonlinear Dynam. 81 (2015), 765-771. DOI 10.1007/s11071-015-2026-0 | MR 3355066
[27] Pecora, L. M., Carroll, T. L.: Synchronization in chaotic systems. Phys. Rev. Lett. 64 (1990), 821-824. DOI 10.1103/physrevlett.64.821 | MR 1038263 | Zbl 1098.37553
[28] Pikovsky, A., Rosenblum, M., Kurths, J.: Synchronization: A Universal Concept in Nonlinear Sciences. Cambridge University Press, Cambridge 2001. DOI 10.1017/cbo9780511755743 | MR 1869044
[29] Pourmahmood, M., Khanmohammadi, S., Alizadeh, G.: Synchronization of two different uncertain chaotic systems with unknown parameters using a robust adaptive sliding mode controller. Commun. Nonlinear Sci. Numer. Simulat. 16 (2011), 2853-2868. DOI 10.1016/j.cnsns.2010.09.038 | MR 2772300 | Zbl 1221.93131
[30] Stefanovska, A., Haken, H., McClintock, E., Hožič, M., Bajrović, F., Ribarič, S.: Reversible transitions between synchronization states of the cardiorespiratory system. Phys. Rev. Lett. 85 (2000), 4831-4834. DOI 10.1103/physrevlett.85.4831
[31] Sun, Y. Z., Li, W., Zhao, D. H.: Finite-time stochastic outer synchronization between two complex dynamical networks with different topologies. Chaos 22 (2012), 023152. DOI 10.1063/1.4731265 | MR 3388569
[32] Sun, Y. Z., Ruan, J.: Synchronization in coupled time-delayed systems with parameter mismath and noise perturbation. Chaos 19 (2009), 043113. DOI 10.1063/1.3262488
[33] Sun, Y. Z., Shi, H. J., Bakare, E. A., Meng, Q. X.: Noise-induced outer synchronization between two different complex dynamical networks. Nonlinear Dynam. 76 (2014), 519-528. DOI 10.1007/s11071-013-1145-8 | MR 3189189 | Zbl 1319.37028
[34] Vincent, U. E., Guo, R.: Finite-time synchronization for a class of chaotic and hyperchaotic systems via adaptive feedback controller. Phys. Lett. A 375 (2011), 2322-2326. DOI 10.1016/j.physleta.2011.04.041 | Zbl 1242.34078
[35] Wang, H., Han, Z. Z., Zhang, W.: Finite-time chaos control of unified chaotic systems with uncertain parameters. Nonlinear Dynam. 55 (2009), 323-328. DOI 10.1007/s11071-008-9364-0 | MR 2472222
[36] Wu, J., Ma, Z. C., Sun, Y. Z., Liu, F.: Finite-time synchronization of chaotic systems with noise perturbation. Kybernetika 54 (2015), 137-149. DOI 10.14736/kyb-2015-1-0137 | MR 3333837
[37] Yan, J. J., Hung, M. L., Chang, T. Y., Yang, Y. S.: Robust synchronization of chaotic systems via adaptive sliding mode control. Phys. Lett. A 356 (2006), 220-225. DOI 10.1016/j.physleta.2006.03.047
[38] Yang, Y. Q., Wu, X. F.: Global finite-time synchronization of a class of the non-autonomous chaotic systems. Nonlinear Dynam. 70 (2012), 197-208. DOI 10.1007/s11071-012-0442-y | MR 2991264 | Zbl 1267.93150
[39] Yin, J. L., Khoo, S., Man, Z. H., Yu, X. H.: Finite-time stability and instability of stochastic nonlinear systems. Automatica 47 (2011), 2671-2677. DOI 10.1016/j.automatica.2011.08.050 | MR 2886936 | Zbl 1235.93254
[40] Zhang, X. M., Han, Q. L., Yu, X. H.: Survey on recent advances in networked control systems. IEEE Trans. Ind. Informat. 12 (2016), 1740-1752. DOI 10.1109/tii.2015.2506545
[41] Zhang, G., Liu, Z. R., Ma, Z. J.: Generalized synchronization of different dimensional chaotic dynamical systems. Chaos Solitons and Fractals 32 (2007), 773-779. DOI 10.1016/j.chaos.2005.11.099 | MR 2280118
[42] Zhou, X. B., Jiang, M. R., Huang, Y. Q.: Switched modified function projective synchronization between two complex nonlinear hyperchaotic systems based on adaptive control and parameter identification. Kybernetika 50 (2014), 632-642. DOI 10.14736/kyb-2014-4-0632 | MR 3275089 | Zbl 1311.34120
Partner of
EuDML logo