[2] Haddad, W. M., Chellaboina, V.:
Nonlinear Dynamical Systems and Control: A Lyapunov-Based Approach. Princeton University Press, New Jersey 2008.
MR 2381711 |
Zbl 1142.34001
[3] Hui, Q., Haddad, W. M., Bhat, S. P.:
Semistability, finite-time stability, differential inclusions, and discontinuous dynamical systems having a continuum of equilibria. IEEE Trans. Automat. Control 54 (2009), 2465-2470.
DOI 10.1109/tac.2009.2029397 |
MR 2562855
[4] Liu, Y., Lageman, C., Anderson, B., Shi, G.: An Arrow-Hurwicz-Uzawa type flow as least squares solver for network linear equations. arXiv:1701.03908v1.
[6] Liu, J., Mou, S., Morse, A. S.:
Asynchronous distributed algorithms for solving linear algebraic equations. IEEE Trans. Automat Control PP (2017), 99, 1-1.
DOI 10.1109/TAC.2017.2714645
[7] Mou, S., Liu, J., Morse, A. S.:
A distributed algorithm for solving a linear algebraic equation. IEEE Trans. Automat. Control 60 (2015), 2863-2878.
DOI 10.1109/tac.2015.2414771 |
MR 3419577
[8] Nedic, A., Ozdaglar, A., Parrilo, P. A.:
Constrained consensus and optimization in multi-agent networks. IEEE Trans. Automat. Control 55 (2010), 922-938.
DOI 10.1109/tac.2010.2041686 |
MR 2654432
[9] Ni, W., Wang, X.:
Averaging approach to distributed convex optimization for continuous-time multi-agent systems. Kybernetika 52 (2016), 898-913.
DOI 10.14736/kyb-2016-6-0898 |
MR 3607853
[11] Ruszczynski, A.:
Nonlinear Optimization. Princeton University Press, New Jersey 2006.
MR 2199043
[12] Shi, G., Anderson, B. D. O.:
Distributed network flows solving linear algebraic equations. In: American Control Conference, Boston 2016, pp. 2864-2869.
DOI 10.1109/acc.2016.7525353
[16] Zeng, X., Hui, Q.:
Energy-event-triggered hybrid supervisory control for cyber-physical network systems. IEEE Trans. Automat. Control 60 (2015), 3083-3088.
DOI 10.1109/tac.2015.2409900 |
MR 3419603
[17] Zeng, X., Yi, P., Hong, Y.:
Distributed continuous-time algorithm for constrained convex optimizations via nonsmooth analysis approach. IEEE Trans. Automat. Control 62 (2017), 5227-5233.
DOI 10.1109/tac.2016.2628807 |
MR 3708893