[1] Alquarashi, A., Etemadi, A. H., Khodaei, A.:
Treatment of uncertainty for next generation power systems: State-of-the-art in stochastic optimization. Electr. Power Syst. Res. 141 (2016), 233-245.
DOI 10.1016/j.epsr.2016.08.009
[2] Barttfeld, M., Alleborn, N., Durst, F.:
Dynamic optimization of multiple-zone air impingement drying process. Comput. Chem. Engrg. 30 (2006), 467-489.
DOI 10.1016/j.compchemeng.2005.10.016
[3] Birge, J. R., Louveaux, F.:
Introduction to Stochastic Programming. Springer, New York 2011.
MR 2807730
[4] Brimacombe, J. K., Sorimachi, K.:
Crack formation in continuous-casting of steel. Metal. Trans. B. Proc. Metal. 8 (1977), 489-505.
DOI 10.1007/bf02696937
[5] Carvalho, E. P., Martínez, J., Martínez, J. M., Pisnitchenko, F.:
On optimization strategies for parameter estimation in models governed by partial differential equations. Math. Comput. Simul. 114 (2015), 14-24.
DOI 10.1016/j.matcom.2010.07.020 |
MR 3357814
[6] Carrasco, M., Ivorra, B., Ramos, A. M.:
Stochastic topology design optimization for continuous elastic materials. Comput. Meth. Appl. Mech. Engrg. 289 (2015), 131-154.
DOI 10.1016/j.cma.2015.02.003 |
MR 3327148
[7] Carpentier, P. L., Gendreau, M., Bastin, F.:
Long-term management of a hydroelectric multireservoir system under uncertainty using the progressive hedging algorithm. Water Resour. Res. 49 (2013), 2812-2827.
DOI 10.1002/wrcr.20254
[8] Cheng, Y. M., Li, D. Z., Li, N., Lee, Y. Y., Au, S. K.:
Solution of some engineering partial differential equations governed by the minimal of a functional by global optimization method. J. Mech. 29 (2013), 507-516.
DOI 10.1017/jmech.2013.26
[9] Drud, A.:
CONOPT - A GRG code for large sparse dynamic nonlinear optimization problems. Math. Program. 31 (1985), 153-191.
DOI 10.1007/bf02591747 |
MR 0777289
[10] Gade, D., Ryan, G. Hackebeil. S. M., Watson, J.-P., Wets, R. J.-B., Woodruff, D. L.:
Obtaining lower bounds from the progressive hedging algorithm for stochastic mixed-integer programs. Math. Prog. 157 (2016), 47-67.
DOI 10.1007/s10107-016-1000-z |
MR 3492067
[11] Gonçalves, R. E. C., Finardi, E. C., Silva, E. L. da:
Applying different decomposition schemes using the progressive hedging algorithm to the operation planning problem of a hydrothermal system. Electr. Power Syst. Res. 83 (2012), 19-27.
DOI 10.1016/j.epsr.2011.09.006
[12] Gul, S., Denton, B. T., Fowler, J. W.:
A progressive hedging approach for surgery planning under uncertainty. INFORMS J. Comput. 27 (2015), 755-772.
DOI 10.1287/ijoc.2015.0658 |
MR 3432659
[13] Ikeda, S., Ooka, R.:
A new optimization strategy for the operating schedule of energy systems under uncertainty of renewable energy sources and demand changes. Energ. Build. 125 (2016), 75-85.
DOI 10.1016/j.enbuild.2016.04.080
[14] Bergman, T. L., Lavine, A. S., Incropera, F. P., Dewitt, D. P.: Fundamentals of Heat and Mass Transfer. Seventh edition. Wiley, New York 2011.
[15] Klimeš, L.: Stochastic Programming Algorithms. Master Thesis. Brno University of Technology, 2010.
[16] Klimeš, L., Popela, P.: An implementation of progressive hedging algorithm for engineering problem. In: Proc. 16th International Conference on Soft Computing MENDEL, Brno 2010, pp. 459-464.
[17] Klimeš, L., Popela, P., Štětina, J.: Decomposition approach applied to stochastic optimization of continuous steel casting. In: Proc. 17th International Conference on Soft Computing MENDEL, Brno 2011, pp. 314-319.
[18] Klimeš, L., Mauder, T., Štětina, J.: Stochastic approach and optimal control of continuous steel casting process by using progressive hedging algorithm. In: Proc. 20th International Conference on Materials and Metallurgy METAL, Brno 2011, pp. 146-151.
[19] Marca, M. La, Armbruster, D., Herty, M., Ringhofer, C.:
Control of continuum models of production systems. IEEE Trans. Automat. Control 55 (2010), 2511-2526.
DOI 10.1109/tac.2010.2046925 |
MR 2721893
[20] Lamghari, A., Dimitrakopoulos, R.:
Progressive hedging applied as a metaheuristic to schedule production in open-pit mines accounting for reserve uncertainty. Eur. J. Oper. Res. 253 (2016), 843-855.
DOI 10.1016/j.ejor.2016.03.007 |
MR 3490823
[21] Liu, J., Liu, C.:
Optimization of mold inverse oscillation control parameters in continuous casting process. Mater. Manuf. Process. 30 (2015), 563-568.
DOI 10.1080/10426914.2015.1004696
[22] Mills, K. C., Ramirez-Lopez, P., Lee, P. D., Santillana, B., Thomas, B. G., Morales, R.:
Looking into continuous casting mould. Ironmak. Steelmak. 41 (2014), 242-249.
DOI 10.1179/0301923313z.000000000255
[23] Mauder, T., Kavička, F., Štětina, J., Franěk, Z., Masarik, M.: A mathematical & stochatic modelling of the concasting of steel slabs. In: Proc. International Conference on Materials and Metallurgy, Hradec nad Moravicí 2009, pp. 41-48.
[24] Mauder, T., Novotný, J.: Two mathematical approaches for optimal control of the continuous slab casting process. In: Proc. 16th International Conference on Soft Computing MENDEL, Brno 2010, pp. 41-48.
[25] Rockafellar, R. T., Wets, R. J.-B.:
Scenarios and policy aggregation in optimization under uncertainty. Math. Oper. Res. 16 (1991), 119-147.
DOI 10.1287/moor.16.1.119 |
MR 1106793
[26] Ruszczynski, A., Shapiro, A.:
Stochastic Programming Models. Handbooks in Operations Research and Management Science, Volume 10: Stochastic Programming, Elsevier, Amsterdam 2003.
DOI 10.1016/s0927-0507(03)10001-1 |
MR 2051791
[27] Shioura, A., Shakhlevich, N. V., Strusevich, V. A.:
Application of submodular optimization to single machine scheduling with controllable processing times subject to release dates and deadlines. INFORMS J. Comput. 28 (2016), 148-161.
DOI 10.1287/ijoc.2015.0660 |
MR 3461551
[28] Stefanescu, D. M.: Science and Engineering of Casting Solidification. Second edition. Springer, New York 2009.
[29] Štětina, J., Klimeš, L., Mauder, T.: Minimization of surface defects by increasing the surface temperature during the straightening of a continuously cast slab. Mater. Tehnol. 47 (2013), 311-316.
[30] Ugail, H., Wilson, M. J.:
Efficient shape parametrisation for automatic design optimisation using a partial differential equation formulation. Comput. Struct. 81 (2003), 2601-2609.
DOI 10.1016/s0045-7949(03)00321-3
[31] Varaiya, P., Wets, R. J.-B.:
Stochastic dynamic optimization approaches and computation. In: Proc. 13th International Symposium on Mathematical Programming, Tokio 1989, pp. 309-331.
DOI 10.1007/978-3-642-82450-0_11 |
MR 1114320
[32] Veliz, F. B., Watson, J. P., Weintraub, A., Wets, R. J.-B., Woodruff, D. L.:
Stochastic optimization models in forest planning: a progressive hedging solution approach. Ann. Oper. Res. 232 (2015), 259-274.
DOI 10.1007/s10479-014-1608-4 |
MR 3383965
[34] Wets, R. J.-B.:
The aggretation principle in scenario analysis and stochastic optimization. In: Algorithms and Model Formulations in Mathematical Programming (S. W. Wallace, ed.), Springer, Berlin 1989.
DOI 10.1007/978-3-642-83724-1_4 |
MR 0996646
[35] Yang, Z., Qui, H. L., Luo, X. W., Shen, D.:
Simulating schedule optimization problem in steelmaking continuous casting process. Int. J. Simul. Model. 14 (2015), 710-718.
DOI 10.2507/ijsimm14(4)co17
[36] Yang, J., Ji, Z. P., Liu, S., Jia, Q.:
Multi-objective optimization based on pareto optimum in secondary cooling and EMS of continuous casting. In: Proc. International Conference on Advanced Robotics and Mechatronics (ICARM), Macau 2016, pp. 283-287.
DOI 10.1109/icarm.2016.7606933
[37] Žampachová, E., Popela, P., Mrázek, M.:
Optimum beam design via stochastic programming. Kybernetika 46 (2010), 571-582.
MR 2676092
[38] Zarandi, M. H. F., Dorry, F., Moghadam, F. S.:
Steelmaking-continuous casting scheduling problem with interval type 2 fuzzy random due dates. In: Proc. IEEE Conference on Norbert Wiener in the 21st Century (21CW), Boston 2014.
DOI 10.1109/norbert.2014.6893896