Previous |  Up |  Next

Article

Keywords:
$\phi $-Laplacian; $L^1$-Carath\'eodory function; Schauder fixed-point Theorem.
Summary:
We study the existence of solutions of the system $$ \begin {cases} (\phi _1(u_1'(t)))'= f_1(t,u_1(t),u_2(t),u'_1(t),u_2'(t)),\qquad \text {a.e. $t\in [0,T]$}, (\phi _2(u_2'(t)))'= f_2(t,u_1(t),u_2(t),u'_1(t),u_2'(t)),\qquad \text {a.e. $t\in [0,T]$}, \end {cases} $$ submitted to nonlinear coupled boundary conditions on $[0,T]$ where $\phi _1,\phi _2\colon (-a, a)\rightarrow \mathbb {R}$, with $0 < a < +\infty $, are two increasing homeomorphisms such that $\phi _1(0) = \phi _2(0) = 0$, and $f_i:[0,T]\times \mathbb {R}^{4}\rightarrow \mathbb {R}$, $i\in \{1,2\}$ are two $L^1$-Carathéodory functions. Using some new conditions and Schauder fixed point Theorem, we obtain solvability result.
References:
[1] Asif, N. A., Talib, I.: Existence of Solutions to a Second Order Coupled System with Nonlinear Coupled Boundary Conditions. American Journal of Applied Mathematics, Special Issue: Proceedings of the 1st UMT National Conference on Pure and Applied Mathematics (1st UNCPAM 2015), 3, 3-1, 2015, 54-59, MR 3081587
[2] Asif, N. A., Talib, I., Tunc, C.: Existence of solution for first-order coupled system with nonlinear coupled boundary conditions. Boundary Value Problems, 2015, 1, 2015, 134, MR 3377958 | Zbl 1342.34035
[3] Bereanu, C., Mawhin, J.: Nonhomogeneous boundary value problems for some nonlinear equations with singular $\phi$-Laplacian. J. Math. Anal. Appl., 352, 2009, 218-233, DOI 10.1016/j.jmaa.2008.04.025 | MR 2499899 | Zbl 1170.34014
[4] Bergmann, P.G.: Introduction to the Theory of Relativity. 1976, Dover Publications, New York, MR 0006876
[5] Brezis, H., Mawhin, J.: Periodic solutions of the forced relativistic pendulum. Differential Integral Equations, 23, 2010, 801-810, MR 2675583 | Zbl 1240.34207
[6] Franco, D., O'Regan, D.: Existence of solutions to second order problems with nonlinear boundary conditions. Proceedings of the Fourth International Conference on Dynamical Systems and Differential Equations, 2002, 273-280, MR 2018125
[7] Franco, D., O'Regan, D.: A new upper and lower solutions approach for second order problems with nonlinear boundary conditions. Arch. Inequal. Appl., 1, 2003, 423-430, MR 2020621 | Zbl 1098.34520
[8] Franco, D., O'Regan, D., Perán, J.: Fourth-order problems with nonlinear boundary conditions. Journal of Computational and Applied Mathematics, 174, 2005, 315-327. DOI 10.1016/j.cam.2004.04.013 | MR 2106442 | Zbl 1068.34013
Partner of
EuDML logo