[4] Bryant, R.: Developments of Cartan geometry and related mathematical problems. RIMS Symposium Proceedings, vol. 1502, Kyoto University, 2006, pp. 1–15.
[6] Calderbank, D.M.J., Diemer, T.:
Differential invariants and curved Bernstein-Gelfand-Gelfand sequences. J. Reine Angew. Math. 537 (2001), 67–103, arXiv:math/0001158.
MR 1856258 |
Zbl 0985.58002
[10] Čap, A., Slovák, J.:
Parabolic geometries I: Background and general theory. Mathematical Surveys and Monographs, American Mathematical Society, Providence, 2009, pp. x+628pp.
MR 2532439 |
Zbl 1183.53002
[11] Čap, A., Slovák, J., Souček, V.:
Bernstein-Gelfand-Gelfand Sequences. Ann. Math. (2) 154 (2001), 97–113, arXiv:math/0001164.
MR 1847589 |
Zbl 1159.58309
[12] Cartan, É.:
Les systèmes de Pfaff a cinq variables et les équations aux derivés partielles du second ordre. Ann. Sci. École Norm. Sup. (3) 27 (1910), 109–192.
DOI 10.24033/asens.618 |
MR 1509120
[13] Doubrov, B., Govorov, A.:
[14] Goursat, É.: Leçons sur le problème de Pfaff. Librairie Scientifique J. Hermann, Paris, 1922.
[15] Gover, A.R., Panai, R., Willse, T.:
Nearly Kähler geometry and $(2,3,5)$-distributions via projective holonomy. to appear. 57pp. arXiv:1403.1959.
MR 3689335
[17] Hammerl, M., Sagerschnig, K.:
Conformal structures associated to generic rank 2 distributions on 5-manifolds — Characterization and Killing-field decomposition. SIGMA 5 (2009), arXiv:0908.0483.
MR 2529166 |
Zbl 1191.53016
[18] Hammerl, M., Somberg, P., Souček, V., Šilhan, J.:
On a new normalization for tractor covariant derivatives. J. Eur. Math. Soc. (JEMS) 14 (2012), 1859–1883, arXiv:1003.6090.
DOI 10.4171/JEMS/349 |
MR 2984590 |
Zbl 1264.58029
[19] Leistner, T., Nurowski, P.:
Conformal structures with $G_{2(2)}$-ambient metrics. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 11 (2012), 407–436, arXiv:0904.0186.
MR 3011997
[20] Nurowski, P.:
Differential equations and conformal structures. J. Geom. Phys. 55 (2005), 19–49, arXiv:math/0406400.
MR 2157414 |
Zbl 1082.53024
[21] Sagerschnig, K.:
Split octonions and generic rank two distributions in dimension five. Arch. Math. (Brno) 42 (Supplement) (2006), 329–339.
MR 2322419 |
Zbl 1164.53362
[22] Sagerschnig, K.: Weyl structures for generic rank two distributions in dimension five. Ph.D. thesis, Universität Wien, 2008.
[23] Sagerschnig, K., Willse, T.:
The geometry of almost Einstein $(2, 3, 5)$ distributions. SIGMA 13 (2017), 56pp., arXiv:1606.01069.
MR 3598788 |
Zbl 1372.32033