Article
Keywords:
liftings; lifting topology; weakly compact sets; Radon-Nikodym derivative
Summary:
For a Banach space $E$ and a probability space $(X, \mathcal{A}, \lambda)$, a new proof is given that a measure $\mu: \mathcal{A} \to E$, with $\mu \ll \lambda$, has RN derivative with respect to $\lambda$ iff there is a compact or a weakly compact $C \subset E$ such that $|\mu |_{C} : \mathcal{A} \to [0, \infty]$ is a finite valued countably additive measure. Here we define $|\mu |_{C}(A) = \sup \{\sum_{k} |\langle \mu (A_{k}), f_{k}\rangle |\}$ where $\{A_{k}\}$ is a finite disjoint collection of elements from $\mathcal{A}$, each contained in $A$, and $\{f_{k}\}\subset E'$ satisfies $\sup_{k} |f_{k} (C)|\leq 1$. Then the result is extended to the case when $E$ is a Frechet space.
References:
[2] Diestel J., Uhl J.J.:
Vector Measures. Amer. Math. Soc. Surveys, 15, American Mathematical Society, Providence, RI, 1977.
MR 0453964 |
Zbl 0521.46035
[3] Gruenwald M.E., Wheeler R.F.:
A strict representation of $L_{1}(\mu, X)$. J. Math. Anal. Appl. 155 (1991), 140–155.
MR 1089331
[7] Phelps R.R.:
Lectures on Choquet's Theorem. D. van Nostrand Company, Inc., Princeton, N.J.-Toronto, Ont.-London, 1966.
MR 0193470 |
Zbl 0997.46005
[9] Ionescu Tulcea A., Ionescu Tulcea C.:
Topics in the theory of lifting. Springer, New York, 1969.
MR 0276438 |
Zbl 0179.46303