[3] Batalin, I.A., Vilkovisky, G.A.:
Closure of the gauge algebra, generalized Lie equations and Feynman rules. Nuclear Phys. B 234 (1) (1984), 106–124.
MR 0736479
[8] Carmeli, C., Caston, L., Fioresi, R.:
Mathematical foundations of supersymmetry. EMS Series of Lectures in Mathematics, European Mathematical Society (EMS), Zürich, 2011, xiv+287pp., ISBN: 978-3-03719-097-5.
MR 2840967 |
Zbl 1226.58003
[13] Grabowski, J.:
Modular classes revisited. J. Geom. Methods Mod. Phys 11 (9) (2014), 11pp., arXiv:1311.3962.
MR 3270305 |
Zbl 1343.53082
[15] Granåker, J.: Unimodular L-infinity algebras. preprint (2008), arXiv:0803.1763.
[18] Khudaverdian, H.M., Voronov, Th.Th.:
Higher Poisson brackets and differential forms. Geometric methods in physics, AIP Conf. Proc., 1079, Amer. Inst. Phys., Melville, NY, 2008, arXiv:0808.3406, pp. 203–215.
MR 2757715 |
Zbl 1166.70011
[19] Kosmann-Schwarzbach, Y.:
Poisson manifolds, Lie algebroids, modular classes: a survey. SIGMA (2008), paper 005, 30pp., arXiv:0710.3098.
MR 2369386 |
Zbl 1147.53067
[20] Koszul, J.:
Crochet de Schouten-Nijenhuis et cohomologie,The mathematical heritage of Élie Cartan (Lyon, 1984). Astérisque, Numéro Hors Série (1985), 257–271.
MR 0837203
[26] Manin, Y.I.:
Gauge field theory and complex geometry. Fundamental Principles of Mathematical Sciences, vol. 289, Springer-Verlag, Berlin, 2nd ed., 1997, xii+346 pp. ISBN: 3-540-61378-1.
MR 1632008 |
Zbl 0884.53002
[28] Roytenberg, D.:
On the structure of graded symplectic supermanifolds and Courant algebroids. Quantization, Poisson brackets and beyond, Contemp. Math., vol. 315, Amer. Math. Soc., Providence, RI, 2002, arXiv:math/0203110, pp. 169–185.
MR 1958835 |
Zbl 1036.53057
[29] Roytenberg, D.: The modular class of a differential graded manifold, talk presented at the International Workshop on Gauge Theories, Supersymmetry and Mathematical Physics. Lyon, France, 2010, 6-10 April 2010.
[31] Sheng, Y., Zhu, C.:
Higher extensions of Lie algebroids. Commun. Contemp. Math. 0 (2013), 1650034, arXiv:1103.5920.
MR 3631929
[33] Varadarajan, V.S.:
Supersymmetry for mathematicians: an introduction. Courant Lecture Notes in Mathematics, 11. New York University, Courant Institute of Mathematical Sciences, New York, American Mathematical Society, Providence, RI, 2004, viii+300 pp. ISBN: 0-8218-3574-2.
MR 2069561 |
Zbl 1142.58009
[34] Voronov, Th.:
Q-manifolds and Mackenzie theory: an overview. preprint (2007), arXiv:0709.4232.
MR 2971727