Previous |  Up |  Next

Article

Keywords:
star Lindelöf space; first countable space; normal space; countable extent
Summary:
A topological space $X$ is said to be star Lindelöf if for any open cover $\mathcal U$ of $X$ there is a Lindelöf subspace $A \subset X$ such that $\operatorname {St}(A, \mathcal U)=X$. The “extent” $e(X)$ of $X$ is the supremum of the cardinalities of closed discrete subsets of $X$. We prove that under $V=L$ every star Lindelöf, first countable and normal space must have countable extent. We also obtain an example under $\rm MA +\nobreak \neg CH$, which shows that a star Lindelöf, first countable and normal space may not have countable extent.
References:
[1] Bing, R. H.: Metrization of topological spaces. Can. J. Math. 3 (1951), 175-186. DOI 10.4153/CJM-1951-022-3 | MR 0043449 | Zbl 0042.41301
[2] Engelking, R.: General Topology. Sigma Series in Pure Mathematics 6. Heldermann, Berlin (1989). MR 1039321 | Zbl 0684.54001
[3] Fleissner, W. G.: Normal Moore spaces in the constructible universe. Proc. Am. Math. Soc. 46 (1974), 294-298. DOI 10.2307/2039914 | MR 0362240 | Zbl 0314.54028
[4] Ginsburg, J., Woods, R. G.: A cardinal inequality for topological spaces involving closed discrete sets. Proc. Am. Math. Soc. 64 (1977), 357-360. DOI 10.2307/2041457 | MR 0461407 | Zbl 0398.54002
[5] Hodel, R.: Cardinal functions I. Handbook of Set-Theoretic Topology K. Kunen et al. North-Holland, Amsterdam (1984), 1-61. MR 0776620 | Zbl 0559.54003
[6] Miller, A. W.: Special subsets of the real line. Handbook of Set-Theoretic Topology K. Kunen et al. North-Holland, Amsterdam (1984), 201-233. MR 0776624 | Zbl 0588.54035
[7] Tall, F. D.: Normality versus collectionwise normality. Handbook of Set-Theoretic Topology K. Kunen et al. North-Holland, Amsterdam (1984), 685-732. MR 0776634 | Zbl 0552.54011
[8] Douwen, E. K. van, Reed, G. M., Roscoe, A. W., Tree, I. J.: Star covering properties. Topology Appl. 39 (1991), 71-103. DOI 10.1016/0166-8641(91)90077-Y | MR 1103993 | Zbl 0743.54007
[9] Xuan, W. F., Shi, W. X.: Notes on star Lindelöf space. Topology Appl. 204 (2016), 63-69. DOI 10.1016/j.topol.2016.02.009 | MR 3482703 | Zbl 1342.54015
Partner of
EuDML logo