Previous |  Up |  Next

Article

Keywords:
adjacency matrix; unicyclic graph; bicyclic graph; inverse graph; perfect matching
Summary:
A graph is nonsingular if its adjacency matrix $A(G)$ is nonsingular. The inverse of a nonsingular graph $G$ is a graph whose adjacency matrix is similar to $A(G)^{-1}$ via a particular type of similarity. Let $\mathcal {H}$ denote the class of connected bipartite graphs with unique perfect matchings. Tifenbach and Kirkland (2009) characterized the unicyclic graphs in $\mathcal {H}$ which possess unicyclic inverses. We present a characterization of unicyclic graphs in $\mathcal {H}$ which possess bicyclic inverses.
References:
[1] Akbari, S., Kirkland, S. J.: On unimodular graphs. Linear Algebra Appl. 421 (2007), 3-15. DOI 10.1016/j.laa.2006.10.017 | MR 2290681 | Zbl 1108.05060
[2] Barik, S., Neumann, M., Pati, S.: On nonsingular trees and a reciprocal eigenvalue property. Linear Multilinear Algebra 54 (2006), 453-465. DOI 10.1080/03081080600792897 | MR 2259602 | Zbl 1119.05064
[3] Buckley, F., Doty, L. L., Harary, F.: On graphs with signed inverses. Networks 18 (1988), 151-157. DOI 10.1002/net.3230180302 | MR 0953918 | Zbl 0646.05061
[4] Cvetković, D. M., Gutman, I., Simić, S. K.: On self-pseudo-inverse graphs. Publ. Elektroteh. Fak., Univ. Beogr., Ser. Mat. Fiz. (1978), 602-633, (1979), 111-117. MR 0580431 | Zbl 0437.05047
[5] Frucht, R., Harary, F.: On the corona of two graphs. Aequationes Mathematicae 4 (1970), 322-325. DOI 10.1007/BF01844162 | MR 0281659 | Zbl 0198.29302
[6] Godsil, C. D.: Inverses of trees. Combinatorica 5 (1985), 33-39. DOI 10.1007/BF02579440 | MR 0803237 | Zbl 0578.05049
[7] Harary, F.: On the notion of balance of a signed graph. Mich. Math. J. 2 (1953), 143-146. DOI 10.1307/mmj/1028989917 | MR 0067468 | Zbl 0056.42103
[8] Harary, F., Minc, H.: Which nonnegative matrices are self-inverse?. Math. Mag. 49 (1976), 91-92. DOI 10.2307/2689442 | MR 0396629 | Zbl 0321.15008
[9] Panda, S. K., Pati, S.: On the inverse of a class of bipartite graphs with unique perfect matchings. Electron. J. Linear Algebra 29 (2015), 89-101. DOI 10.13001/1081-3810.2865 | MR 3414587 | Zbl 1323.05107
[10] Panda, S. K., Pati, S.: On some graphs which possess inverses. Linear Multilinear Algebra 64 (2016), 1445-1459. DOI 10.1080/03081087.2015.1091434 | MR 3490639 | Zbl 1341.05216
[11] Pavlíková, S., Krč-Jediný, J.: On the inverse and the dual index of a tree. Linear Multilinear Algebra 28 (1990), 93-109. DOI 10.1080/03081089008818034 | MR 1077739 | Zbl 0745.05018
[12] Simion, R., Cao, D.-S.: Solution to a problem of C. D. Godsil regarding bipartite graphs with unique perfect matching. Combinatorica 9 (1989), 85-89. DOI 10.1007/BF02122687 | MR 1010303 | Zbl 0688.05056
[13] Tifenbach, R. M.: Strongly self-dual graphs. Linear Algebra Appl. 435 (2011), 3151-3167. DOI 10.1016/j.laa.2011.05.010 | MR 2831603 | Zbl 1226.05170
[14] Tifenbach, R. M., Kirkland, S. J.: Directed intervals and the dual of a graph. Linear Algebra Appl. 431 (2009), 792-807. DOI 10.1016/j.laa.2009.03.032 | MR 2535551 | Zbl 1226.05171
[15] Yates, K.: Hückel Molecular Orbital Theory. Academic Press (1978). DOI 10.1016/b978-0-12-768850-3.x5001-9
Partner of
EuDML logo