Summary: A graph is nonsingular if its adjacency matrix $A(G)$ is nonsingular. The inverse of a nonsingular graph $G$ is a graph whose adjacency matrix is similar to $A(G)^{-1}$ via a particular type of similarity. Let $\mathcal {H}$ denote the class of connected bipartite graphs with unique perfect matchings. Tifenbach and Kirkland (2009) characterized the unicyclic graphs in $\mathcal {H}$ which possess unicyclic inverses. We present a characterization of unicyclic graphs in $\mathcal {H}$ which possess bicyclic inverses.
[9] Panda, S. K., Pati, S.: On the inverse of a class of bipartite graphs with unique perfect matchings. Electron. J. Linear Algebra 29 (2015), 89-101. DOI 10.13001/1081-3810.2865 | MR 3414587 | Zbl 1323.05107
[12] Simion, R., Cao, D.-S.: Solution to a problem of C. D. Godsil regarding bipartite graphs with unique perfect matching. Combinatorica 9 (1989), 85-89. DOI 10.1007/BF02122687 | MR 1010303 | Zbl 0688.05056