Previous |  Up |  Next

Article

Keywords:
related set; basis; derivation
Summary:
A Lie algebra $L$ is called 2-step nilpotent if $L$ is not abelian and $[L, L]$ lies in the center of $L$. 2-step nilpotent Lie algebras are useful in the study of some geometric problems, and their classification has been an important problem in Lie theory. In this paper, we give a classification of 2-step nilpotent Lie algebras of dimension 9 with 2-dimensional center.
References:
[1] Ancochea-Bermudez, J. M., Goze, M.: Classification des algèbres de Lie filiformes de dimension 8. Arch. Math. 50 (1988), 511-525 French. DOI 10.1007/BF01193621 | MR 0948265 | Zbl 0628.17005
[2] Ancochea-Bermudez, J. M., Goze, M.: Classification des algèbres de Lie nilpotentes complexes de dimension 7. Arch. Math. 52 (1989), 175-185 French. DOI 10.1007/BF01191272 | MR 0985602 | Zbl 0672.17005
[3] Galitski, L. Y., Timashev, D. A.: On classification of metabelian Lie algebras. J. Lie Theory 9 (1999), 125-156. MR 1680007 | Zbl 0923.17015
[4] Gauger, M. A.: On the classification of metabelian Lie algebras. Trans. Am. Math. Soc. 179 (1973), 293-329. DOI 10.2307/1996506 | MR 0325719 | Zbl 0267.17015
[5] Gong, M.-P.: Classification of Nilpotent Lie Algebras of Dimension 7 (over Algebraically Closed Fields and R). Ph.D. Thesis, University of Waterloo, Waterloo (1998). MR 2698220
[6] Goze, M., Khakimdjanov, Y.: Nilpotent Lie Algebras. Mathematics and Its Applications 361, Kluwer Academic Publishers, Dordrecht (1996). DOI 10.1007/978-94-017-2432-6 | MR 1383588 | Zbl 0845.17012
[7] Goze, M., Remm, E.: $k$-step nilpotent Lie algebras. Georgian Math. J. 22 (2015), 219-234. DOI 10.1515/gmj-2015-0022 | MR 3353570 | Zbl 06458841
[8] Khuhirun, B., Misra, K. C., Stitzinger, E.: On nilpotent Lie algebras of small breadth. J. Algebra 444 (2015), 328-338. DOI 10.1016/j.jalgebra.2015.07.036 | MR 3406181 | Zbl 1358.17013
[9] Leger, G., Luks, E.: On derivations and holomorphs of nilpotent Lie algebras. Nagoya Math. J. 44 (1971), 39-50. DOI 10.1017/s0027763000014525 | MR 0297828 | Zbl 0264.17003
[10] Remm, E.: Breadth and characteristic sequence of nilpotent Lie algebras. Commun. Algebra 45 (2017), 2956-2966. DOI 10.1080/00927872.2016.1233238 | MR 3594570
[11] Ren, B., Meng, D. J.: Some completable 2-step nilpotent Lie algebras I. Linear Algebra Appl. 338 (2001), 77-98. MR 1860314 | Zbl 0992.17005
[12] Ren, B., Zhou, L. S.: Classification of 2-step nilpotent Lie algebras of dimension 8 with 2-dimensional center. Commun. Algebra 39 (2011), 2068-2081. DOI 10.1080/00927872.2010.483342 | MR 2813164 | Zbl 1290.17004
[13] Revoy, P.: Algèbres de Lie métabéliennes. Ann. Fac. Sci. Toulouse, V. Ser., Math. 2 (1980), 93-100 French. DOI 10.5802/afst.547 | MR 0595192 | Zbl 0447.17007
[14] Santharoubane, L. J.: Kac-Moody Lie algebras and the classification of nilpotent Lie algebras of maximal rank. Can. J. Math. 34 (1982), 1215-1239. DOI 10.4153/CJM-1982-084-5 | MR 0678665 | Zbl 0495.17011
[15] Seeley, C.: 7-dimensional nilpotent Lie algebras. Trans. Am. Math. Soc. 335 (1993), 479-496. DOI 10.2307/2154390 | MR 1068933 | Zbl 0770.17003
[16] Umlauf, K. A.: Über die Zusammensetzung der endlichen continuierlichen Transformationsgruppen insbesondere der Gruppen vom Range Null. Ph.D. Thesis, University of Leipzig, Leipzig German (1891).
[17] Yan, Z., Deng, S.: The classification of two step nilpotent complex Lie algebras of dimension 8. Czech. Math. J. 63 (2013), 847-863. DOI 10.1007/s10587-013-0057-6 | MR 3125659 | Zbl 1291.17013
Partner of
EuDML logo