Previous |  Up |  Next

Article

Keywords:
second order sliding mode control; flexible spacecraft; extended state observer; finite-time convergence
Summary:
This paper presents a composite controller that combines nonlinear disturbance observer and second order sliding mode controller for attitude tracking of flexible spacecraft. First, a new nonsingular sliding surface is introduced. Then, a second order sliding mode attitude controller is designed to achieve high-precision tracking performance. An extended state observer is also developed to estimate the total disturbance torque consisting of environmental disturbances, system uncertainties and flexible vibrations. The estimated result is used as feed-forward compensation. Although unknown bounded disturbances, inertia uncertainties and the coupling effect of flexible modes are taken into account, the resulting control method offers robustness and finite time convergence of attitude maneuver errors. Finite-time stability for the closed-loop system is rigorously proved using the Lyapunov stability theory. Simulation results are presented to demonstrate the effectiveness and robustness of the proposed control scheme.
References:
[1] Bang, H., Ha, C.-K., Kim, J. H.: Flexible spacecraft attitude maneuver by application of sliding mode control. Acta Astronautica 57 (2005), 841-850. DOI 10.1016/j.actaastro.2005.04.009
[2] Bhat, S., Bernstein, D.: Finite-time stability and continuous autonomus systems. SIAM J. Control. Optim. 38 (2000), 751-766. DOI 10.1137/s0363012997321358 | MR 1756893
[3] Chen, Z., Huang, J.: Attitude tracking and disturbance rejection of rigid spacecraft by adaptive control. IEEE Trans. Automat. Control 54 (2009), 600-605. DOI 10.1109/tac.2008.2008350 | MR 2191553
[4] Chen, Z., Huang, J.: Attitude tracking of rigid spacecraft subject to disturbances of unknown frequencies. Int. J. Robust Nonlinear Control 16 (2014), 2231-2242. DOI 10.1002/rnc.2983 | MR 3271990
[5] Davila, J., Fridman, L., Levant, A.: Second-order sliding-modes observer for mechanical system. IEEE Trans. Automat. Control 50 (2005), 1785-1789. DOI 10.1109/tac.2005.858636 | MR 2182725
[6] Gennaro, S. Di: Passive attitude control of flexible spacecraft from quaternion measurements. J. Optim. Theory Appl. 116 (2003), 41-60. DOI 10.1023/a:1022106118182 | MR 1961027
[7] Ding, S., Zheng, W. X.: Nonsmooth attitude stabilization of a flexible spacecraft. IEEE Trans. Aerosp. Electron. Syst 50 (2014), 1163-1181. DOI 10.1109/taes.2014.120779
[8] Du, H., Li, S., Qian, C.: Finite-time attitude tracking control of spacecraft with application to attitude synchronization. IEEE Trans. Automat. Control 56 (2011), 2711-2717. DOI 10.1109/tac.2011.2159419 | MR 2884015
[9] Erdong, J., Zhaowei, S.: Passivity-based control for a flexible spacecraft in the presence of disturbances. Int. J. Non-Linear Mech. 45 (2010), 348-356. DOI 10.1016/j.ijnonlinmec.2009.12.008
[10] Feng, Y., Yu, X., Man, Z.: Non-singular terminal sliding mode control of rigid manipulators. Automatica 38 (2002), 2159-2167. DOI 10.1016/s0005-1098(02)00147-4 | MR 2134882
[11] Hu, Q.: Robust adaptive sliding mode attitude control and vibration damping of flexible spacecraft subject to unknown disturbance and uncertainty. Trans. Inst. Measurement and Control 34 (2012), 436-447. DOI 10.1177/0142331210394033
[12] Hu, Q., Jiang, B., Friswell, M.: Robust saturated finite time output feedback attitude stabilization for rigid spacecraft. J. Guid. Control Dyn. 37 (2014), 1914-1929. DOI 10.2514/1.g000153
[13] Hu, Q., Wang, Z., Gao, H.: Sliding mode and shaped input vibration control of flexible systems. IEEE Trans. Aerosp. Electron. Syst. 44 (2008), 503-519. DOI 10.1109/taes.2008.4560203
[14] Jiang, Y., Hu, Q., Ma, G.: Adaptive backstepping fault-tolerant control for flexible spacecraft with unknown bounded disturbances and actuator failures. ISA Trans. 49 (2010), 57-69. DOI 10.1016/j.isatra.2009.08.003
[15] Levant, A.: Sliding order and sliding accuracy in sliding mode control. Int. J. Control 58 (1993), 1247-1263. DOI 10.1080/00207179308923053 | MR 1250057
[16] Li, B., Hu, Q., Ma, G.: `Extended state observer based robust attitude control of spacecraft with input saturation. Aerosp. Sci. Technol. 40 (2016), 173-182. DOI 10.1016/j.ast.2015.12.031
[17] Li, J., Pan, Y., Kumar, K. D.: Design of asymptotic second-order sliding mode control for satellite formation flying. J. Guid. Control Dyn. 35 (2015), 309-316. DOI 10.2514/1.55747
[18] Li, S. H., Wang, Z., Fei, S. M.: Comments on the paper: Robust controllers design with finite time convergence for rigid spacecraft attitude tracking. Aerosp. Sci. Technol. 15 (2011), 193-195. DOI 10.1016/j.ast.2010.11.005
[19] Luo, W., Chung, Y. C., Ling, K. V.: Inverse optimal adaptive control for attitude tracking spacecraft. IEEE Trans. Automat. Control 50 (2005), 1639-1654. DOI 10.1109/tac.2005.858694 | MR 2182713
[20] Man, Z. H., Paplinski, A. P., Wu, H. R.: A robust MIMO terminal sliding mode control scheme for rigid robotic manipulators. IEEE Trans. Automat. Control 39 (1994), 2464-2469. DOI 10.1109/9.362847 | MR 1337572
[21] Moreno, J. A.: On strict Lyapunov functions for some non-homogeneous super-twisting algorithms. J. Franklin Inst. 351 (2014), 1902-1919. DOI 10.1016/j.jfranklin.2013.09.019 | MR 3182704
[22] Moulay, E., Perruquetti, W.: Finite-time stability and continuous autonomous systems. J. Math. Anal. Appl. 323 (2006), 1430-1443. DOI 10.1016/j.jmaa.2005.11.046 | MR 2260193
[23] Pukdeboon, C., Kumam, P.: Robust optimal sliding mode control for spacecraft position and attitude maneuvers. Aerosp. Sci. Technol. 43 (2015), 329-342. DOI 10.1016/j.jmaa.2005.11.046
[24] Pukdeboon, C., Siricharuanun, P.: Nonsingular terminal sliding mode based finite-time control for spacecraft attitude tracking. Int. J. Control Automat. Syst. 12 (2014), 530-540. DOI 10.1007/s12555-013-0247-x | MR 3080136
[25] Pukdeboon, C., Zinober, A. S. I., Thein, M.-W. L.: Quasi-continuous higher-order sliding mode controllers for spacecraft attitude tracking manoeuvres. IEEE Trans. Ind. Electron. 57 (2010), 1436-1444. DOI 10.1109/tie.2009.2030215
[26] Shtessel, Y. B., Shkolnikov, I. A, Levant, A.: A. Smooth second-order sliding modes: Missile guidance application. Automatica 43 (2007), 1470-1476. DOI 10.1016/j.automatica.2007.01.008 | MR 2320533
[27] Song, Z., Li, H., Sun, K.: Finite-time control for nonlinear spacecraft attitude based on terminal sliding mode technique. ISA Trans. 53 (2014), 117-124. DOI 10.1016/j.isatra.2013.08.008
[28] Tiwari, P. M., Janardhanan, S., Nabi, M. un: Rigid spacecraft attitude control using adaptive integral second order sliding mode. Aerosp. Sci. Technol. 42 (2015), 50-57. DOI 10.1016/j.ast.2014.11.017
[29] Utkin, V.: Sliding Modes in Control and Optimization. Springer-Verlag, Berlin 1992. MR 1295845 | Zbl 0748.93044
[30] Wu, S., Radice, G., Sun, Z.: Robust finite-time control for flexible spacecraft attitude maneuver. J. Aerosp. Engrg. 27 (2014), 185-190. DOI 10.1061/(asce)as.1943-5525.0000247
[31] Wu, Y., Yu, X., Man, Z.: Terminal sliding mode control design for uncertain dynamic system. Syst. Control Lett. 34 (1998), 281-288. DOI 10.1016/s0167-6911(98)00036-x | MR 1639041
[32] Xia, Y., Zhu, Z., Fu, M., Wang, S.: Attitude tracking of rigid spacecraft with bounded disturbances. IEEE Trans. Ind. Electron. 58 (2011), 647-659. DOI 10.1109/tie.2010.2046611
[33] Yu, S., Yu, X., Shirinzadeh, B., Man, Z.: Continuous finite-time control for roboti manipulators with terminal sliding mode. Automatica 41 (2005), 1957-1964. DOI 10.1109/tie.2010.2046611 | MR 2168660
[34] Zhao, D., Li, S., Gao, F.: A new terminal sliding mode control for robotic manipulators. Int. J. Control 82 (2009), 1804-1813. DOI 10.1080/00207170902769928 | MR 2567229
[35] Zhong, C. X., Guo, Y., Yu, Z., Wang, L., Chen, Q. W.: Finite-time attitude control for flexible spacecraft with unknown bounded disturbance. Trans. Institute of Measurement and Control 38 (2016), 2, 240-249. DOI  | MR 3571486
Partner of
EuDML logo