[1] Agniel, R. G., Jury, E. I:
Almost sure boundedness of randomly sampled systems. SIAM J. Control 9 (1971), 372-384.
DOI 10.1137/0309027 |
MR 0304038
[2] Battistelli, G., Chisci, L.:
Kullback-Leibler average, consensus on probability densities, and distributed state estimation with guaranteed stability. Automatica 50 (2014), 707-718.
DOI 10.1016/j.automatica.2013.11.042 |
MR 3173970
[5] Cattivelli, F., Sayed, A.:
Diffusion strategies for distributed Kalman filtering and smoothing. IEEE Trans. Automat. Control 55 (2010), 2069-2084.
DOI 10.1109/tac.2010.2042987 |
MR 2722500
[8] Goodwin, G. C., Seron, M. M., Doná, J. A. De:
Constrained Control And Estimation: An Optimisation Approach. Springer-Verlag, New York 2006.
DOI 10.1007/b138145 |
MR 2085919
[9] Gupta, N., Hauser, R.:
Kalman filtering with equality and inequality state constraints. arXiv preprint arXiv:0709.2791
DOI |
MR 0426293
[10] Hu, J., Hu, X.:
Optimal target trajectory estimation and filtering using networked sensors. In: Proc. 27th Chinese Control Conference, Kunming 2008, 540-545.
DOI 10.1109/chicc.2008.4605514 |
MR 2425665
[12] Hu, C., Qin, W., He, B., Liu, G.:
Distributed $H_{\infty}$ estimation for moving target under switching multi-agent network. Kybernetika 51 (2014), 814-829.
DOI 10.14736/kyb-2015-5-0814 |
MR 3445986
[14] Kamal, A. T., Farrell, J. A., Roy-Chowdhury, A. K.:
Information weighted consensus filters and their application in distributed camera networks. IEEE Trans. Automat. Control 58 (2013), 3112-3125.
DOI 10.1109/tac.2013.2277621 |
MR 3152272
[18] Nedić, A., Ozdaglar, A., Parrilo, P. A.:
Constrained consensus and optimization in multi-agent networks. IEEE Trans. Automat Control 55 (2010), 922-938.
DOI 10.1109/tac.2010.2041686 |
MR 2654432
[19] Olfati-Saber, R.:
Distributed Kalman filtering for sensor networks. in Proc. IEEE Conference on Decision and Control, New Orleans 2007, pp. 5492-5498.
DOI 10.1109/cdc.2007.4434303
[20] Olfati-Saber, R.:
Kalman-consensus filter: Optimality, stability, and performance. In: Proc. Joint IEEE Conference on Decision and Control and Chinese Control Conference, Shanghai 2009, pp. 7036-7042.
DOI 10.1109/cdc.2009.5399678
[21] Reif, K., Günther, S., Yaz, E., Unbehauen, R.:
Stochastic stability of the discrete-time extended Kalman filter. IEEE Trans. Automat. Control 44 (1999), 714-728.
DOI 10.1109/9.754809 |
MR 1684426
[22] Shi, G., Johansson, K., Hong, Y.:
Reaching an optimal consensus: Dynamical systems that compute intersections of convex sets. IEEE Trans. Automatic Control 58 (2013), 610-622.
DOI 10.1109/tac.2012.2215261 |
MR 3029459
[24] Simon, D., Chia, T. L.:
Kalman filtering with state equality constraints. IEEE Trans. Aerospace Electronic Systems 38 (2002), 128-136.
DOI 10.1109/7.993234
[25] Simon, D., Simon, D. L.:
Kalman filtering with inequality constraints for turbofan engine health estimation. IEE Proc. Control Theory Appl. 153 (2006), 371-378.
DOI 10.1049/ip-cta:20050074
[26] Stanković, S. S., Stanković, M. S., Stipanović, D. M.:
Consensus based overlapping decentralized estimation with missing observations and communication faults. Automatica 45 (2009), 1397-1406.
DOI 10.1016/j.automatica.2009.02.014 |
MR 2879441
[29] Zhou, Z., Fang, H., Hong, Y.:
Distributed estimation for moving target under switching interconnection network. In: Proc. 12th International Conference on Control Automation Robotics Vision (ICARCV), Guangzhou 2012, pp. 1818-1823.
DOI 10.1109/icarcv.2012.6485124
[30] Zhou, Z., Fang, H., Hong, Y.:
Distributed estimation for moving target based on state-consensus strategy. IEEE Trans. Automat. Control 58 (2013), 2096-2101.
DOI 10.1109/tac.2013.2246476 |
MR 3090041