[3] Bauer, A., Czado, C., Klein, T.:
Pair-copula construction for non-Gaussian DAG models. Canad. J. Stat. 40 (2012), 1, 86-109.
DOI 10.1002/cjs.10131 |
MR 2896932
[4] Bedford, T., Cooke, R.:
Probability density decomposition for conditionally dependent random variables modeled by vines. Ann. Math. Artif. Intell. 32 (2001), 245-268.
DOI 10.1023/a:1016725902970 |
MR 1859866
[6] Brechmann, E. C., Czado, C., Aas, K.:
Truncated regular vines in high dimensions with applications to financial data. Canad. J. Statist. 40 (2012), 1, 68-85.
DOI 10.1002/cjs.10141 |
MR 2896931
[10] Czado, C.:
Pair-copula constructions of multivariate copulas. In: Copula Theory and Its Applications (P. Jaworski, F. Durante, W. Härdle, and T. Rychlik, eds.), Springer, Berlin 2010.
DOI 10.1007/978-3-642-12465-5_4 |
MR 3051264
[11] Dissman, J., Brechmann, E. C., Czado, C., Kurowicka, D.:
Selecting and estimating regular vine copulae and application to financial returns. Comput. Statist. Data Anal. 59 (2013), 52-69.
DOI 10.1016/j.csda.2012.08.010 |
MR 3000041
[12] Hanea, A., Kurowicka, D., Cooke, R.:
Hybrid method for quantifying and analyzing Bayesian belief networks. Qual. Reliab. Engrg. 22 (2006), 708-729.
DOI 10.1002/qre.808
[13] Haff, I. Hobaek, Aas, K., Frigessi, A.:
On the simplified pair-copula construction - simply useful or too simplistic?. J. Multivariate Anal. 101 (2010), 5, 1296-1310.
DOI 10.1016/j.jmva.2009.12.001 |
MR 2595309
[14] Haff, I. Hobaek, Segers, J.:
Nonparametric estimation of pair-copula constructions with the empirical pair-copula. 2010.
DOI
[15] Hobaek-Haff, I., Aas, K., Frigessi, A., Lacal, V.:
Structure learning in Bayesian Networks using regular vines. Computat. Statist. Data Anal. 101 (2016), 186-208.
DOI 10.1016/j.csda.2016.03.003 |
MR 3504845
[17] Kovács, E., Szántai, T.:
On the approximation of discrete multivariate probability distribution using the new concept of $t$-cherry junction tree. Lect. Notes Economics Math. Systems 633, Proc. IFIP/IIASA/GAMM Workshop on Coping with Uncertainty, Robust Solutions, 2008, IIASA, Laxenburg 2010, pp. 39-56.
DOI 10.1007/978-3-642-03735-1_3 |
MR 2681735
[18] Kovács, E., Szántai, T.:
Multivariate copula expressed by lower dimensional copulas. 2010.
DOI
[19] Kovács, E., Szántai, T.: Hypergraphs in the characterization of regular-vine copula structures. In: Proc. 13th International Conference on Mathematics and its Applications, Timisoara 2012(a), pp. 335-344.
[20] Kovács, E., Szántai, T.:
Vine copulas as a mean for the construction of high dimensional probability distribution associated to a Markov network. 2012(b).
DOI
[21] Kurowicka, D., Cooke, R.:
The vine copula method for representing high dimensional dependent distributions: Application to continuous belief nets. In: Proc. 2002 Winter Simulation Conference 2002, pp. 270-278.
DOI 10.1109/wsc.2002.1172895
[22] Kurowicka, D., Cooke, R. M.:
Uncertainty Analysis with High Dimensional Dependence Modelling. John Wiley, Chichester 2006.
DOI 10.1002/0470863072 |
MR 2216540
[23] Kurowicka, D.:
Optimal truncation of vines. In: Dependence-Modeling - Handbook on Vine Copulas (D. Kurowicka and H. Joe, eds.), Word Scientific Publishing, Singapore 2011.
MR 2856976
[24] Lauritzen, S. L., Spiegelhalter, D. J.:
Local Computations with probabilites on graphical structures and their application to expert systems. J. Roy. Statist. Soc. B 50 (1988), 157-227.
MR 0964177
[25] Lauritzen, S. L.:
Graphical Models. Clarendon Press, Oxford 1996.
MR 1419991
[26] Szántai, T., Kovács, E.:
Hypergraphs as a mean of discovering the dependence structure of a discrete multivariate probability distribution. In: Proc. Conference Applied Mathematical Programming and Modelling (APMOD), Bratislava 2008, Ann. Oper. Res. 193 (2012), 1, 71-90.
DOI 10.1007/s10479-010-0814-y |
MR 2874757
[27] Whittaker, J.:
Graphical Models in Applied Multivariate Statistics. John Wiley and Sons, 1990.
MR 1112133