Previous |  Up |  Next

Article

Keywords:
bounded lattice; triangular norm; triangular conorm; uninorms
Summary:
In this paper, we propose the general methods, yielding uninorms on the bounded lattice $(L,\leq ,0,1)$, with some additional constraints on $e\in L\backslash \{0,1\}$ for a fixed neutral element $e\in L\backslash \{0,1\}$ based on underlying an arbitrary triangular norm $T_{e}$ on $[0,e]$ and an arbitrary triangular conorm $S_{e}$ on $[e,1]$. And, some illustrative examples are added for clarity.
References:
[1] Aşıcı, E., Karaçal, F.: On the T-partial order and properties. Inf. Sci. 267 (2014), 323-333. DOI 10.1016/j.ins.2014.01.032 | MR 3177320
[2] Aşıcı, E., Karaçal, F.: Incomparability with respect to the triangular order. Kybernetika 52 (2016), 15-27. DOI 10.14736/kyb-2016-1-0015 | MR 3482608
[3] Aşıcı, E.: An order induced by nullnorms and its properties. Fuzzy Sets Syst. In press 2017. DOI 10.1016/j.fss.2016.12.004 | MR 3690353
[4] Birkhoff, G.: Lattice Theory. American Mathematical Society Colloquium Publ., Providence 1967. DOI 10.1090/coll/025 | MR 0227053 | Zbl 0537.06001
[5] Baets, B. De: Idempotent uninorms. European J. Oper. Res. 118 (1999), 631-642. DOI 10.1016/s0377-2217(98)00325-7 | Zbl 1178.03070
[6] Bodjanova, S., Kalina, M.: Construction of uninorms on bounded lattices. In: IEEE 12th International Symposium on Intelligent Systems and Informatics, SISY 2014, Subotica. DOI 10.1109/sisy.2014.6923558
[7] Çaylı, G. D., Karaçal, F., Mesiar, R.: On a new class of uninorms on bounded lattices. Inf. Sci. 367-368 (2016), 221-231. DOI 10.1016/j.ins.2016.05.036 | MR 3684677
[8] Çaylı, G. D., Karaçal, F.: Some remarks on idempotent nullnorms on bounded lattices. In: Torra V., Mesiar R., Baets B. (eds) Aggregation Functions in Theory and in Practice. AGOP 2017. Advances in Intelligent Systems and Computing, Springer, Cham, 581 (2017), 31-39. DOI 10.1007/978-3-319-59306-7_4 | MR 3623328
[9] Drewniak, J., Drygaś, P.: On a class of uninorms. Int. J. Uncertainly Fuzziness Knowl.-Based Syst. 10 (2002), 5-10. DOI 10.1142/s021848850200179x | MR 1962665
[10] Drygaś, P.: On properties of uninorms with underlying t-norm and t-conorm given as ordinal sums. Fuzzy Sets Syst. 161 (2010), 149-157. DOI 10.1016/j.fss.2009.09.017 | MR 2566236 | Zbl 1191.03039
[11] Drygaś, P., Ruiz-Aguilera, D., Torrens, J.: Acharacterization of uninorms locally internal in $A(e)$ with continuous underlying operators. Fuzzy Sets Syst. 287 (2016), 137-153. DOI 10.1016/j.fss.2015.07.015 | MR 3447023
[12] Drygaś, P., Rak, E.: Distributivity equation in the class of 2-uninorms. Fuzzy Sets Syst. 291 (2016), 82-97. DOI 10.1016/j.fss.2015.02.014 | MR 3463655
[13] Ertuğrul, Ü., Kesicioğlu, M. N., Karaçal, F.: Ordering based on uninorms. Inf. Sci. 330 (2016), 315-327. DOI 10.1016/j.ins.2015.10.019
[14] Fodor, J., Yager, R. R., Rybalov, A.: Structure of uninorms. Int. J. Uncertain Fuzziness Knowl.-Based Syst. 5 (1997), 411-427. DOI 10.1142/s0218488597000312 | MR 1471619 | Zbl 1232.03015
[15] Karaçal, F., Mesiar, R.: Uninorms on bounded lattices. Fuzzy Sets Syst. 261 (2015), 33-43. DOI 10.1016/j.fss.2014.05.001 | MR 3291484
[16] Karaçal, F., Ertuğrul, Ü., Mesiar, R.: Characterization of uninorms on bounded lattices. Fuzzy Sets Syst. 308 (2017), 54-71. DOI 10.1016/j.fss.2016.05.014 | MR 3579154
[17] Klement, E. P., Mesiar, R., Pap, E.: Triangular Norms. Kluwer Acad. Publ., Dordrecht 2000. DOI 10.1007/978-94-015-9540-7 | MR 1790096 | Zbl 1087.20041
[18] Mas, M., Monserrat, M., Torrens, J.: On left and right uninorms. Int. J. Uncertainly Fuzziness Knowl.-Based Syst. 9 (2001), 491-507. DOI 10.1142/s0218488501000909 | MR 1852342 | Zbl 1045.03029
[19] Schweizer, B., Sklar, A.: Probabilistic Metric Spaces. North-Holland, New York 1983. MR 0790314 | Zbl 0546.60010
[20] Takács, M.: Lattice Ordered Monoids and Left Continuous Uninorms and t-norms. Book Chapter from: Theoretical Advances and Applications of Fuzzy Logic and Soft Computing, Book Series: Advances in Soft Computing, Publisher: Springer Berlin/ Heidelberg, 42 (2007), 565-572. DOI 10.1007/978-3-540-72434-6_57
[21] Wang, Z. D., Fang, J. X.: Residual operators of left and right uninorms on a complete lattice. Fuzzy Sets Syst. 160 (2009), 22-31. DOI 10.1016/j.fss.2008.03.001 | MR 2469427
[22] Yager, R. R.: Misrepresentations and challenges: a response to Elkan. IEEE Expert 1994.
[23] Yager, R. R., Rybalov, A.: Uninorms aggregation operators. Fuzzy Sets Syst. 80 (1996), 111-120. DOI 10.1016/0165-0114(95)00133-6 | MR 1389951
Partner of
EuDML logo