Previous |  Up |  Next

Article

Keywords:
nonconforming P1 element; lowest order Raviart-Thomas element; discrete energy norm estimate; divergence of finite element method; maximum angle condition; distorted triangulation
Summary:
Compared to conforming P1 finite elements, nonconforming P1 finite element discretizations are thought to be less sensitive to the appearance of distorted triangulations. E.g., optimal-order discrete $H^1$ norm best approximation error estimates for $H^2$ functions hold for arbitrary triangulations. However, the constants in similar estimates for the error of the Galerkin projection for second-order elliptic problems show a dependence on the maximum angle of all triangles in the triangulation. We demonstrate on an example of a special family of distorted triangulations that this dependence is essential, and due to the deterioration of the consistency error. We also provide examples of sequences of triangulations such that the nonconforming P1 Galerkin projections for a Poisson problem with polynomial solution do not converge or converge at arbitrarily low speed. The results complement analogous findings for conforming P1 finite elements.
References:
[1] Acosta, G., Durán, R. G.: The maximum angle condition for mixed and nonconforming elements: Application to the Stokes equations. SIAM J. Numer. Anal. 37 (1999), 18-36. DOI 10.1137/S0036142997331293 | MR 1721268 | Zbl 0948.65115
[2] Babuška, I., Aziz, A. K.: On the angle condition in the finite element method. SIAM J. Numer. Anal. 13 (1976), 214-226. DOI 10.1137/0713021 | MR 0455462 | Zbl 0324.65046
[3] Braess, D.: Finite Elements. Theory, Fast Solvers and Applications in Solid Mechanics. Cambridge University Press, Cambridge (2007). DOI 10.1017/CBO9780511618635 | MR 2322235 | Zbl 1118.65117
[4] Braess, D.: An a posteriori error estimate and a comparison theorem for the nonconforming $P_1$ element. Calcolo 46 (2009), 149-155. DOI 10.1007/s10092-009-0003-z | MR 2520373 | Zbl 1192.65142
[5] Brenner, S. C.: Poincaré-Friedrichs inequalities for piecewise $H^1$ functions. SIAM J. Numer. Anal. 41 (2003), 306-324. DOI 10.1137/S0036142902401311 | MR 1974504 | Zbl 1045.65100
[6] Brenner, S. C., Scott, L. R.: The Mathematical Theory of Finite Element Methods. Texts in Applied Mathematics 15, Springer, New York (2008). DOI 10.1007/978-0-387-75934-0 | MR 2373954 | Zbl 0804.65101
[7] Carstensen, C., Gedicke, J., Rim, D.: Explicit error estimates for Courant, Crouzeix-Raviart and Raviart-Thomas finite element methods. J. Comput. Math. 30 (2012), 337-353. DOI 10.4208/jcm.1108-m3677 | MR 2965987 | Zbl 1274.65290
[8] Carstensen, C., Peterseim, D., Schedensack, M.: Comparison results of finite element methods for the Poisson model problem. SIAM J. Numer. Anal. 50 (2012), 2803-2823. DOI 10.1137/110845707 | MR 3022243 | Zbl 1261.65115
[9] Crouzeix, M., Raviart, P.-A.: Conforming and nonconforming finite element methods for solving the stationary Stokes equations I. Rev. Franc. Automat. Inform. Rech. Operat. 7 (1973), 33-76. DOI 10.1051/m2an/197307R300331 | MR 0343661 | Zbl 0302.65087
[10] Hannukainen, A., Korotov, S., Křížek, M.: The maximum angle condition is not necessary for convergence of the finite element method. Numer. Math. 120 (2012), 79-88. DOI 10.1007/s00211-011-0403-2 | MR 2885598 | Zbl 1255.65196
[11] Jamet, P.: Estimations d'erreur pour des éléments finis droits presque dégénérés. Rev. Franc. Automat. Inform. Rech. Operat. 10, Analyse Numer. 10 (1976), 43-60. DOI 10.1051/m2an/197610r100431 | MR 0455282 | Zbl 0346.65052
[12] Kučera, V.: On necessary and sufficient conditions for finite element convergence. arXiv:1601.02942 (2016). MR 3700195
[13] Marini, L. D.: An inexpensive method for the evaluation of the solution of the lowest order Raviart-Thomas mixed method. SIAM J. Numer. Anal. 22 (1985), 493-496. DOI 10.1137/0722029 | MR 0787572 | Zbl 0573.65082
[14] Oswald, P.: Divergence of FEM: Babuška-Aziz triangulatiuons revisited. Appl. Math., Praha 60 (2015), 473-484. DOI 10.1007/s10492-015-0107-5 | MR 3396476 | Zbl 1363.65202
[15] Raviart, P.-A., Thomas, J. M.: A mixed finite element method for 2nd order elliptic problems. Mathematical Aspects of Finite Element Method I. Galligani, E. Magenes Proc. Conf., Rome, 1975, Lect. Notes Math. 606, Springer, New York (1977), 292-315. DOI 10.1007/bfb0064470 | MR 0483555 | Zbl 0362.65089
[16] Schwarz, H. A.: Sur une définition erroneé de l'aire d'une surface courbe. Gesammelte Mathematische Abhandlungen 2 Springer, Berlin (1890), 309-311, 369-370.
[17] Vohralík, M.: On the discrete Poincaré-Friedrichs inequalities for nonconforming approximations of the Sobolev space $H^1$. Numer. Funct. Anal. Optimization 26 (2005), 925-952. DOI 10.1080/01630560500444533 | MR 2192029 | Zbl 1089.65124
Partner of
EuDML logo