Previous |  Up |  Next

Article

Keywords:
inner model; extension of an inner model; $\kappa$-generic extension; $\kappa$-C.C. generic extension; $\kappa$-boundedness condition; $\kappa$ approximation condition; Boolean ultrapower; Boolean valued model
Summary:
The paper contains a self-contained alternative proof of my Theorem in Characterization of generic extensions of models of set theory, Fund. Math. 83 (1973), 35--46, saying that for models $M\subseteq N$ of ZFC with same ordinals, the condition $Apr_{M,N}(\kappa)$ implies that $N$ is a $\kappa$-C.C. generic extension of $M$.
References:
[1] Balcar B.: A theorem on supports in the theory of semisets. Comment. Math. Univ. Carolin. 14 (1973), 1–6. MR 0340015 | Zbl 0281.02060
[2] Balcar B., Štěpánek P.: Teorie množin. (Set Theory, Czech), Academia, Prague, 1986, second edition 2003. MR 0911270 | Zbl 0635.03039
[3] Bukovský L.: Ensembles génériques d'entiers. C.R. Acad. Sci. Paris 273 (1971), 753–755. MR 0286647 | Zbl 0231.02086
[4] Bukovský L.: Characterization of generic extensions of models of set theory. Fund. Math. 83 (1973), 35–46. DOI 10.4064/fm-83-1-35-46 | MR 0332477 | Zbl 0344.02043
[5] Friedman S.D., Fuchino S., Sakai H.: On the set-generic multiverse. preprint.
[6] Gaifman H.: Concerning measures on Boolean algebras. Pacific J. Math. 14 (1964), 61–73. DOI 10.2140/pjm.1964.14.61 | MR 0161952 | Zbl 0127.02306
[7] Jech T.: Set Theory. the third millenium edition, revised and expanded, Springer, Berlin, 2003. MR 1940513 | Zbl 1007.03002
[8] Kunen K.: Set Theory. Studies in Logic 34, College Publications, London, 2013. MR 2905394 | Zbl 0960.03033
[9] Laver R.: Certain very large cardinals are not created in small forcing extensions. Ann. Pure Appl. Logic 149 (2007), 1–6. DOI 10.1016/j.apal.2007.07.002 | MR 2364192 | Zbl 1128.03046
[10] Solovay R.: A model of set theory in which every set of reals is Lebesgue measurable. Ann. of Math. 92 (1970), 1–56. DOI 10.2307/1970696 | MR 0265151 | Zbl 0207.00905
[11] Vopěnka P.: General theory of $\nabla$-models. Comment. Math. Univ. Carolin. 8 (1967), 145–170. MR 0214460 | Zbl 0162.01701
[12] Vopěnka P., Balcar B.: On complete models of the set theory. Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 15 (1967), 839–841. MR 0242659 | Zbl 0177.01404
[13] Vopěnka P., Hájek P.: The Theory of Semisets. Academia, Prague, 1972. MR 0444473 | Zbl 0332.02064
Partner of
EuDML logo