Previous |  Up |  Next

Article

Keywords:
Lusin measurable multifunctions; differential inclusion; selection
Summary:
We consider a Cauchy problem associated to a second-order evolution inclusion in non separable Banach spaces under Filippov type assumptions and we prove the existence of mild solutions.
References:
[1] Baliki A., Benchohra M., Graef J.R.: Global existence and stability of second order functional evolution equations with infinite delay. Electronic J. Qual. Theory Differ. Equations 2016 (2016), no. 23, 1–10. MR 3498741
[2] Baliki A., Benchohra M., Nieto J.J.: Qualitative analysis of second-order functional evolution equations. Dynamic Syst. Appl. 24 (2015), 559–572. MR 3444994
[3] Benchohra M., Medjadj I.: Global existence results for second order neutral functional differential equations with state-dependent delay. Comment. Math. Univ. Carolin. 57 (2016), 169–183. MR 3513443
[4] Bressan A., Colombo G.: Extensions and selections of maps with decomposable values. Studia Math. 90 (1988), 69–86. DOI 10.4064/sm-90-1-69-86 | MR 0947921 | Zbl 0677.54013
[5] De Blasi F.S., Pianigiani G.: Evolution inclusions in non separable Banach spaces. Comment. Math. Univ. Carolin. 40 (1999), 227–250. MR 1732644 | Zbl 0987.34063
[6] Filippov A.F.: Classical solutions of differential equations with multivalued right-hand side. SIAM J. Control Optim. 5 (1967), 609–621. DOI 10.1137/0305040 | MR 0220995
[7] Henriquez H.R.: Existence of solutions of nonautonomous second order functional differential equations with infinite delay. Nonlinear Anal. 74 (2011), 3333–3352. DOI 10.1016/j.na.2011.02.010 | MR 2793566
[8] Henriquez H.R., Poblete V., Pozo J.C.: Mild solutions of non-autonomous second order problems with nonlocal initial conditions. J. Math. Anal. Appl. 412 (2014), 1064–1083. DOI 10.1016/j.jmaa.2013.10.086 | MR 3147269 | Zbl 1317.34144
[9] Kozak M.: A fundamental solution of a second-order differential equation in a Banach space. Univ. Iagel. Acta. Math. 32 (1995), 275–289. MR 1345144 | Zbl 0855.34073
[10] Kuratowski K., Ryll-Nardzewski C.: A general theorem on selectors. Bull. Acad. Pol. Sci. Math. Astron. Phys. 13 (1965), 397–403. MR 0188994 | Zbl 0152.21403
Partner of
EuDML logo