Previous |  Up |  Next

Article

Keywords:
half-linear differential systems; Picone identity; Sturmian comparison
Summary:
Two identities of the Picone type for a class of half-linear differential systems in the plane are established and the Sturmian comparison theory for such systems is developed with the help of these new formulas.
References:
[1] Diaz, J.B., McLaughlin, J.R.: Sturm comparison and separation theorems for linear, second order, self-adjointordinary differential equations and for first order systems. Appl. Anal. 2 (1972), 355–376. DOI 10.1080/00036817208839050 | MR 0412515
[2] Dosoudilová, M., Lomtatidze, A., Šremr, J.: Oscillatory properties of solutions to certain two-dimensional systems of non-linear ordinary differential equations. Nonlinear Anal. 120 (2015), 57–75. MR 3348046 | Zbl 1336.34053
[3] Elbert, Á.: A half-linear second order differential equation. Colloq. Math. Soc. János Bolyai 30 (1979), 153–180. MR 0680591
[4] Jaroš, J.: Wirtinger inequality and nonlinear differential systems. Arch. Math. (Brno) 49 (2013), 35–41. DOI 10.5817/AM2013-1-35 | MR 3073014 | Zbl 1299.34124
[5] Jaroš, J., Kusano, T.: A Picone-type identity for second order half-linear differential equations. Acta Math. Univ. Comenian. (N.S.) 68 (1999), 137–151. MR 1711081 | Zbl 0926.34023
[6] Jaroš, J., Kusano, T.: Elbert-type comparison theorems for a class of nonlinear Hamiltonian systems. Electron. J. Qual. Theory Differ. Equ. 100 (2016), 1–10. DOI 10.14232/ejqtde.2016.1.100 | MR 3568335
[7] Kreith, K.: A Picone identity for first order systems. J. Math. Anal. Appl. 31 (1970), 297–308. DOI 10.1016/0022-247X(70)90024-7 | MR 0261088
[8] Kreith, K.: Oscillation theory. Lecture Notes in Math., vol. 324, Springer, 1973. Zbl 0258.35001
[9] Li, H.J., Yeh, C.C.: Sturmian comparison theorem for half-linear second order differential equations. Proc. Roy. Soc. Edinburgh Sect. A 125A (1995), 1193–1204. MR 1362999 | Zbl 0873.34020
[10] Mirzov, J.D.: On some analogs of Sturm’s and Kneser’s theorems for nonlinear systems. J. Math. Anal. Appl. 53 (1976), 418–425. DOI 10.1016/0022-247X(76)90120-7 | MR 0402184 | Zbl 0327.34027
[11] Mirzov, J.D.: Asymptotic Properties of Solutions of Systems of Nonlinear Nonautonomous Ordinary Differential Equations. Folia Fac. Sci. Natur. Univ. Masaryk. Brun. Math., Mathematica, vol. 14, Masaryk University Brno, 2004. MR 2144761 | Zbl 1154.34300
[12] Picone, M.: Sui valori eccepzionali di un parametro da cui dipende un’ equazione differenziale ordinaria del secondordine. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) II (1910), 1–141. MR 1556637
[13] Reid, W.T.: Sturmian Theory for Ordinary Differential Equations. Appl. Math. Sci., vol. 31, Springer, New York, 1980. MR 0606199 | Zbl 0459.34001
[14] Rostás, K.: Comparison theorems for pseudoconjugate points of half-linear ordinary differentialequations of the second order. Acta Math. Univ. Comenian. (N.S.) 72 (2003), 223–228. MR 2040908
Partner of
EuDML logo