[2] Ashrafi, A. R., Sahraei, H.:
On finite groups whose every normal subgroup is a union of the same number of conjugacy classes. Vietnam J. Math. 30 (2002), 289-294.
MR 1933567 |
Zbl 1018.20026
[3] Ashrafi, A. R., Venkataraman, G.:
On finite groups whose every proper normal subgroup is a union of a given number of conjugacy classes. Proc. Indian Acad. Sci., Math. Sci. 114 (2004), 217-224.
DOI 10.1007/BF02830000 |
MR 2083462 |
Zbl 1070.20027
[5] Guo, X., Chen, R.:
On finite $X$-decomposable groups for $X=\{1, 2, 3, 4\}$. Bull. Iranian Math. Soc. 40 (2014), 1243-1262.
MR 3273835 |
Zbl 06572891
[10] Shi, W. J.: A class of special minimal normal subgroups. J. Southwest Teachers College 9 (1984), 9-13 Chinese.
[11] Wang, J.:
A special class of normal subgroups. J. Chengdu Univ. Sci. Technol. 1987 (1987), 115-119 Chinese. English summary.
MR 1028900 |
Zbl 0671.20022