Previous |  Up |  Next

Article

Keywords:
SS-RR method; polynomial eigenvalue problem; balancing technique
Summary:
One of the most efficient methods for solving the polynomial eigenvalue problem (PEP) is the Sakurai-Sugiura method with Rayleigh-Ritz projection (SS-RR), which finds the eigenvalues contained in a certain domain using the contour integral. The SS-RR method converts the original PEP to a small projected PEP using the Rayleigh-Ritz projection. However, the SS-RR method suffers from backward instability when the norms of the coefficient matrices of the projected PEP vary widely. To improve the backward stability of the SS-RR method, we combine it with a balancing technique for solving a small projected PEP. We then analyze the backward stability of the SS-RR method. Several numerical examples demonstrate that the SS-RR method with the balancing technique reduces the backward error of eigenpairs of PEP.
References:
[1] Asakura, J., Sakurai, T., Tadano, H., Ikegami, T., Kimura, K.: A numerical method for nonlinear eigenvalue problems using contour integrals. JSIAM Lett. 1 (2009), 52-55. DOI 10.14495/jsiaml.1.52 | MR 3042556 | Zbl 1278.65072
[2] Asakura, J., Sakurai, T., Tadano, H., Ikegami, T., Kimura, K.: A numerical method for polynomial eigenvalue problems using contour integral. Japan J. Ind. Appl. Math. 27 (2010), 73-90. DOI 10.1007/s13160-010-0005-x | MR 2685138 | Zbl 1204.65056
[3] Betcke, T., Higham, N. J., Mehrmann, V., Schröder, C., Tisseur, F.: NLEVP: A collection of nonlinear eigenvalue problems. ACM Trans. Math. Softw. 39 (2013), Paper No. 7, 28 pages. DOI 10.1145/2427023.2427024 | MR 3031626 | Zbl 1295.65140
[4] Chen, H., Maeda, Y., Imakura, A., Sakurai, T., Tisseur, F.: Improving the numerical stability of the Sakurai-Sugiura method for quadratic eigenvalue problems. JSIAM Lett. 9 (2017), 17-20. DOI 10.14495/jsiaml.9.17 | MR 3637096
[5] Higham, N. J., Li, R., Tisseur, F.: Backward error of polynomial eigenproblems solved by linearization. SIAM J. Matrix Anal. Appl. 29 (2007), 1218-1241. DOI 10.1137/060663738 | MR 2369292 | Zbl 1159.65042
[6] Higham, N. J., Mackey, D. S., Tisseur, F., Garvey, S. D.: Scaling, sensitivity and stability in the numerical solution of quadratic eigenvalue problems. Int. J. Numer. Methods Eng. 73 (2008), 344-360. DOI 10.1002/nme.2076 | MR 2382048 | Zbl 1166.74009
[7] Ikegami, T., Sakurai, T.: Contour integral eigensolver for non-Hermitian systems: a Rayleigh-Ritz-type approach. Taiwanese J. Math. 14 (2010), 825-837. DOI 10.11650/twjm/1500405869 | MR 2667719 | Zbl 1198.65071
[8] Ikegami, T., Sakurai, T., Nagashima, U.: A filter diagonalization for generalized eigenvalue problems based on the Sakurai-Sugiura projection method. J. Comput. Appl. Math. 233 (2010), 1927-1936. DOI 10.1016/j.cam.2009.09.029 | MR 2564028 | Zbl 1185.65061
[9] Osborne, E. E.: On preconditioning of matrices. J. Assoc. Comput. Math. 7 (1960), 338-345. DOI 10.1145/321043.321048 | MR 0143333 | Zbl 0106.31604
[10] Parlett, B., Reinsch, C.: Balancing a matrix for calculation of eigenvalues and eigenvectors. Numer. Math. 13 (1969), 293-304. DOI 10.1007/BF02165404 | MR 1553969 | Zbl 0184.37703
[11] Sakurai, T., Sugiura, H.: A projection method for generalized eigenvalue problems using numerical integration. J. Comput. Appl. Math. 159 (2003), 119-128. DOI 10.1016/S0377-0427(03)00565-X | MR 2022322 | Zbl 1037.65040
[12] Tisseur, F.: Backward error and condition of polynomial eigenvalue problems. Linear Algebra Appl. 309 (2000), 339-361. DOI 10.1016/S0024-3795(99)00063-4 | MR 1758374 | Zbl 0955.65027
[13] Tisseur, F., Meerbergen, K.: The quadratic eigenvalue problem. SIAM Rev. 43 (2001), 235-286. DOI 10.1137/S0036144500381988 | MR 1861082 | Zbl 0985.65028
[14] Yokota, S., Sakurai, T.: A projection method for nonlinear eigenvalue problems using contour integrals. JSIAM Lett. 5 (2013), 41-44. DOI 10.14495/jsiaml.5.41 | MR 3035551
Partner of
EuDML logo