[3] Ahmad, B., Alsaedi, A.:
Nonlinear fractional differential equations with nonlocal fractional integro-differential boundary conditions. Bound. Value Probl. (electronic only) (2012), Article ID 124, 10 pages.
DOI 10.1186/1687-2770-2012-124 |
MR 3017351 |
Zbl 1281.34004
[4] Ahmad, B., Nieto, J. J.:
Existence and approximation of solutions for a class of nonlinear impulsive functional differential equations with anti-periodic boundary conditions. Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 69 (2008), 3291-3298.
DOI 10.1016/j.na.2007.09.018 |
MR 2450538 |
Zbl 1158.34049
[5] Akhmerov, R. R., Kamenskiĭ, M. I., Potapov, A. S., Rodkina, A. E., Sadovskiĭ, B. N.:
Measures of Noncompactness and Condensing Operators. Operator Theory: Advances and Applications 55. Birkhäuser, Basel (1992).
DOI 10.1007/978-3-0348-5727-7 |
MR 1153247 |
Zbl 0748.47045
[6] Alsaedi, A., Ntouyas, S. K., Ahmad, B.:
Existence results for Langevin fractional differential inclusions involving two fractional orders with four-point multiterm fractional integral boundary conditions. Abstr. Appl. Anal. 2013 (2013), Article ID 869837, 17 pages.
DOI 10.1155/2013/869837 |
MR 3049420 |
Zbl 1276.26008
[7] Alsulami, H. H.:
Application of fixed point theorems for multivalued maps to anti-periodic problems of fractional differential inclusions. Filomat 28 (2014), 91-98.
DOI 10.2298/FIL1401091A |
MR 3359985
[9] Banaś, J., Goebel, K.:
Measures of Noncompactness in Banach Spaces. Lecture Notes in Pure and Applied Mathematics 60. Marcel Dekker, New York (1980).
MR 0591679 |
Zbl 0441.47056
[10] Benchohra, M., Henderson, J., Seba, D.:
Measure of noncompactness and fractional differential equations in Banach spaces. Commun. Appl. Anal. 12 (2008), 419-427.
MR 2494987 |
Zbl 1182.26007
[11] Benchohra, M., Henderson, J., Seba, D.:
Boundary value problems for fractional differential inclusions in Banach spaces. Fract. Differ. Calc. 2 (2012), 99-108.
DOI 10.7153/fdc-02-07 |
MR 3003005
[18] Lakshmikantham, V., Leela, S., Devi, J. Vasundhara:
Theory of Fractional Dynamic Systems. Cambridge Scientific Publishers, Cambridge (2009).
Zbl 1188.37002
[19] Lasota, A., Opial, Z.:
An application of the Kakutani---Ky Fan theorem in the theory of ordinary differential equations. Bull. Acad. Pol. Sci., Sér. Sci. Math. Astron. Phys. 13 (1965), 781-786.
MR 0196178 |
Zbl 0151.10703
[21] Ntouyas, S. K.:
Existence results for nonlocal boundary value problems for fractional differential equations and inclusions with fractional integral boundary conditions. Discuss. Math., Differ. Incl. Control Optim. 33 (2013), 17-39.
DOI 10.7151/dmdico.1146 |
MR 3136580 |
Zbl 1307.34016
[22] Ntouyas, S. K., Tariboon, J.:
Nonlocal boundary value problems for Langevin fractional differential inclusions with Riemann-Liouville fractional integral boundary conditions. Dyn. Contin. Discrete Impuls. Syst., Ser. A, Math. Anal. 22 (2015), 123-141.
MR 3360149 |
Zbl 1326.34022
[24] Podlubny, I.:
Geometric and physical interpretation of fractional integration and fractional differentiation. Fract. Calc. Appl. Anal. 5 (2002), 367-386; Correction: "Geometric and physical interpretation of fractional integration and fractional differentiation'', ibid. {\it 6} (2003), 109-110.
MR 1967839 |
Zbl 1042.26003
[26] Samko, S. G., Kilbas, A. A., Marichev, O. I.:
Fractional Integrals and Derivatives: Theory and Applications. Gordon and Breach, New York (1993).
MR 1347689 |
Zbl 0818.26003
[27] Szufla, S.:
On the application of measure of noncompactness to existence theorems. Rend. Sem. Mat. Univ. Padova 75 (1986), 1-14.
MR 0847653 |
Zbl 0589.45007