[2] Azroul, E., Barbara, A., Benboubker, M. B., Hjiaj, H.:
Entropy solutions for nonhomogeneous anisotropic $\Delta_{\vec p(\cdot)}$ problems. Appl. Math. 41 (2014), 149-163.
DOI 10.4064/am41-2-3 |
MR 3281367 |
Zbl 1316.35107
[5] Nardo, R. Di, Feo, F., Guibé, O.:
Uniqueness result for nonlinear anisotropic elliptic equations. Adv. Differ. Equ. 18 (2013), 433-458.
MR 3086461 |
Zbl 1272.35092
[8] Guibé, O.:
Uniqueness of the renormalized solution to a class of nonlinear elliptic equations. On the Notions of Solution to Nonlinear Elliptic Problems: Results and Developments (A. Alvino et al., eds.) Quaderni di Matematica 23. Caserta (2008), 255-282.
MR 2762168 |
Zbl 1216.35036
[10] Kone, B., Ouaro, S., Traore, S.:
Weak solutions for anisotropic nonlinear elliptic equations with variable exponents. Electron. J. Differ. Equ. (electronic only) 2009 (2009), paper No. 144, 11 pages.
MR 2565886 |
Zbl 1182.35092
[11] Kováčik, O., Rákosník, J.:
On spaces $L^{p(x)}$ and $W^{k,p(x)}$. Czech. Math. J. 41 (1991), 592-618.
MR 1134951 |
Zbl 0784.46029
[15] Zhao, L., Zhao, P., Xie, X.:
Existence and multiplicity of solutions for divergence type elliptic equations. Electron. J. Differ. Equ. (electronic only) 2011 (2011), paper No. 43, 9 pages.
MR 2788662 |
Zbl 1213.35227