Previous |  Up |  Next

Article

Keywords:
Neumann problem; quasilinear elliptic equation; weak solution; variational principle; anisotropic variable exponent Sobolev space
Summary:
We consider the following quasilinear Neumann boundary-value problem of the type $$ \begin {cases} -\displaystyle \sum _{i=1}^{N}\frac {\partial }{\partial x_{i}}a_{i}\Big (x,\frac {\partial u}{\partial x_{i}}\Big ) + b(x)|u|^{p_{0}(x)-2}u = f(x,u)+ g(x,u) &\text {in} \ \Omega , \\ \quad \dfrac {\partial u}{\partial \gamma } = 0 &\text {on} \ \partial \Omega . \end {cases} $$ We prove the existence of infinitely many weak solutions for our equation in the anisotropic variable exponent Sobolev spaces and we give some examples.
References:
[1] Anello, G., Cordaro, G.: Existence of solutions of the Neumann problem for a class of equations involving the $p$-Laplacian via a variational principle of Ricceri. Arch. Math. 79 (2002), 274-287. DOI 10.1007/s00013-002-8314-1 | MR 1944952 | Zbl 1091.35025
[2] Azroul, E., Barbara, A., Benboubker, M. B., Hjiaj, H.: Entropy solutions for nonhomogeneous anisotropic $\Delta_{\vec p(\cdot)}$ problems. Appl. Math. 41 (2014), 149-163. DOI 10.4064/am41-2-3 | MR 3281367 | Zbl 1316.35107
[3] Bendahmane, M., Chrif, M., Manouni, S. El: An approximation result in generalized anisotropic Sobolev spaces and applications. Z. Anal. Anwend. 30 (2011), 341-353. DOI 10.4171/ZAA/1438 | MR 2819499 | Zbl 1231.35065
[4] Boureanu, M.-M., Rădulescu, V. D.: Anisotropic Neumann problems in Sobolev spaces with variable exponent. Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 75 (2012), 4471-4482. DOI 10.1016/j.na.2011.09.033 | MR 2927115 | Zbl 1262.35090
[5] Nardo, R. Di, Feo, F., Guibé, O.: Uniqueness result for nonlinear anisotropic elliptic equations. Adv. Differ. Equ. 18 (2013), 433-458. MR 3086461 | Zbl 1272.35092
[6] Diening, L., Harjulehto, P., Hästö, P., Růžička, M.: Lebesgue and Sobolev Spaces with Variable Exponents. Lecture Notes in Mathematics 2017. Springer, Berlin (2011). DOI 10.1007/978-3-642-18363-8 | MR 2790542 | Zbl 1222.46002
[7] Fan, X., Ji, C.: Existence of infinitely many solutions for a Neumann problem involving the $p(x)$-Laplacian. J. Math. Anal. Appl. 334 (2007), 248-260. DOI 10.1016/j.jmaa.2006.12.055 | MR 2332553 | Zbl 1157.35040
[8] Guibé, O.: Uniqueness of the renormalized solution to a class of nonlinear elliptic equations. On the Notions of Solution to Nonlinear Elliptic Problems: Results and Developments (A. Alvino et al., eds.) Quaderni di Matematica 23. Caserta (2008), 255-282. MR 2762168 | Zbl 1216.35036
[9] Harjulehto, P., Hästö, P.: Sobolev inequalities with variable exponent attaining the values $1$ and $n$. Publ. Mat., Barc. 52 (2008), 347-363. DOI 10.5565/PUBLMAT_52208_05 | MR 2436729 | Zbl 1163.46022
[10] Kone, B., Ouaro, S., Traore, S.: Weak solutions for anisotropic nonlinear elliptic equations with variable exponents. Electron. J. Differ. Equ. (electronic only) 2009 (2009), paper No. 144, 11 pages. MR 2565886 | Zbl 1182.35092
[11] Kováčik, O., Rákosník, J.: On spaces $L^{p(x)}$ and $W^{k,p(x)}$. Czech. Math. J. 41 (1991), 592-618. MR 1134951 | Zbl 0784.46029
[12] Mihăilescu, M., Moroşanu, G.: Existence and multiplicity of solutions for an anisotropic elliptic problem involving variable exponent growth conditions. Appl. Anal. 89 (2010), 257-271. DOI 10.1080/00036810802713826 | MR 2598814 | Zbl 1187.35074
[13] Ricceri, B.: A general variational principle and some of its applications. J. Comput. Appl. Math. 113 (2000), 401-410. DOI 10.1016/S0377-0427(99)00269-1 | MR 1735837 | Zbl 0946.49001
[14] užička, M. R\accent23: Electrorheological Fluids: Modeling and Mathematical Theory. Lecture Notes in Mathematics 1748. Springer, Berlin (2000). DOI 10.1007/BFb0104029 | MR 1810360 | Zbl 0962.76001
[15] Zhao, L., Zhao, P., Xie, X.: Existence and multiplicity of solutions for divergence type elliptic equations. Electron. J. Differ. Equ. (electronic only) 2011 (2011), paper No. 43, 9 pages. MR 2788662 | Zbl 1213.35227
Partner of
EuDML logo