[1] Ahmed, E., Hashis, A. H., Rihan, F. A.:
On fractional order cancer model. J. Fractional Calculus Appl. 3 (2012), 1-6.
MR 1330571
[2] Babiarz, A., Niezabitowski, M.:
Controllability Problem of Fractional Neutral Systems: A Survey. Math. Problems Engrg., ID 4715861 (2017), 15 pages.
DOI 10.1155/2017/4715861 |
MR 3603402
[5] Balachandran, K., Zhou, Y., Kokila, J.:
Relative controllability of fractional dynamical systems with discributed delays in control. Comp. Math. Apll. 64 (2012), 3201-3206.
DOI 10.1016/j.camwa.2011.11.061 |
MR 2989348
[6] Balachandran, K.:
Controllability of Nonlinear Fractional Delay Dynamical Systems with Multiple Delays in Control. Lecture Notes in Electrical Engineering. Theory and Applications of Non-integer Order Systems 407 (2016), 321-332.
DOI 10.1007/978-3-319-45474-0_29
[7] Bodnar, M., Piotrowska, J.:
Delay differential equations: theory and applications. Matematyka Stosowana 11 (2011), 17-56 (in Polish).
MR 2755711
[8] Haque, M. A.:
A predator-prey model with discrete time delay considering different growth function of prey. Adv. Apll. Math. Biosciences 2 (2011), 1-16.
DOI 10.1016/j.mbs.2011.07.003
[12] Kilbas, A. A., Srivastava, H. M., Trujillo, J. J.:
Theory and Applications of Fractional Differential Equations. North-Holland Mathematics Studies 204 2006.
MR 2218073 |
Zbl 1092.45003
[14] Klamka, J.: Constrained controllability of semilinear systems with delayed controls. Bull. Polish Academy of Sciences: Technical Sciences 56 (2008), 333-337.
[15] Klamka, J., Sikora, B.:
New controllability Criteria for Fractional Systems with Varying Delays. Lect. Notes Electr. Engrg. Theory and Applications of Non-integer Order Systems 407 (2017), 333-344.
DOI 10.1007/978-3-319-45474-0_30
[16] Krishnaveni, K., Kannan, K., Balachandar, S. R.: Approximate analytical solution for fractional population growth model. Int. J. Engrg. Technol. 5 (2013), 2832-2836.
[18] Malinowska, A. B., Odziejewicz, T., Schmeidel, E.:
On the existence of optimal control for the fractional continuous-time Cucker-Smale model. Lect. Notes Electr. Engrg., Theory and Applications of Non-integer Order Systems 407 (2016), 227-240.
DOI 10.1007/978-3-319-45474-0_21
[19] Miller, K. S., Ross, B.:
An Introduction to the Fractional Calculus and Fractional Differential Calculus. Villey 1993.
MR 1219954
[20] Monje, A., Chen, Y., Viagre, B. M., Xue, D., Feliu, V.:
Fractional-order Systems and Controls. Fundamentals and Applications. Springer-Verlag 2010.
DOI 10.1007/978-1-84996-335-0 |
MR 3012798
[21] Nirmala, R. J., Balachandran, K., Rodriguez-Germa, L., Trujillo, J. J.:
Controllability of nonlinear fractional delay dynamical systems. Rep. Math. Physics 77 (2016), 87-104.
DOI 10.1016/s0034-4877(16)30007-6 |
MR 3461800
[23] Podlubny, I.:
Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications. In: Mathematics in Science and Engineering, Academic Press 1999.
DOI 10.1016/s0034-4877(16)30007-6 |
MR 1658022 |
Zbl 0924.34008
[24] Robinson, S. M.:
Stability theory for systems of inequalities. Part II. Differentiable nonlinear systems. SIAM J. Numerical Analysis 13 (1976), 497-513.
DOI 10.1137/0713043 |
MR 0410522
[25] Sabatier, J., Agrawal, O. P., Machado, J. A. Tenreiro:
Advances in Fractional Calculus. In: Theoretical Developments and Applications in Physics and Engineering, Springer-Verlag 2007.
DOI 10.1007/978-1-4020-6042-7 |
MR 3184154
[26] Samko, S. G., Kilbas, A. A., Marichev, O. I.:
Fractional Integrals and Derivatives: Theory and Applications. Gordan and Breach Science Publishers 1993.
MR 1347689 |
Zbl 0818.26003
[29] Srivastava, V. K., Kumar, S., Awasthi, M., Singh, B. K.:
Two-dimensional time fractional-order biological population model and its analytical solution. Egyptian J. Basic Appl. Sci. 1 (2014), 71-76.
DOI 10.1016/j.ejbas.2014.03.001