[4] Cúth M., Kalenda O.F.K.:
Rich families and elementary submodels. Cent. Eur. J. Math. 12 (2014), no. 7, 1026–1039.
MR 3188463 |
Zbl 1323.46014
[7] Dow A.:
An introduction to applications of elementary submodels to topology. Topology Proc. 13 (1988), no. 1, 17–72.
MR 1031969 |
Zbl 0696.03024
[9] Fabian M.J.:
Gâteaux Differentiability of Convex Functions and Topology. Weak Asplund Spaces. Canadian Mathematical Society Series of Monographs and Advanced Texts, A Wiley-Interscience Publication, John Wiley & Sons, Inc., New York, 1997.
MR 1461271 |
Zbl 0883.46011
[10] Gul'ko S.P.:
The structure of spaces of continuous functions and their hereditary paracompactness. Uspekhi Mat. Nauk 34 (1979), no. 6(210), 33–40.
MR 0562814
[11] Kechris A.S.:
Classical Descriptive Set Theory. Graduate Texts in Mathematics, 156, Springer, New York, 1995.
MR 1321597 |
Zbl 0819.04002
[14] Kunen K.:
Set Theory. An Introduction to Independence Proofs. reprint of the 1980 original, Studies in Logic and the Foundations of Mathematics, 102, North-Holland Publishing Co., Amsterdam, 1983.
MR 0756630 |
Zbl 0534.03026
[16] Orihuela J., Valdivia M.:
Projective generators and resolutions of identity in Banach spaces. Congress on Functional Analysis (Madrid, 1988), Rev. Mat. Univ. Complut. Madrid 2 (1989), suppl., 179–199.
MR 1057218 |
Zbl 0717.46009
[17] Valdivia M.:
Resolutions of the identity in certain Banach spaces. Collect. Math. 39 (1988), no. 2, 127–140.
MR 1027683 |
Zbl 0718.46006
[18] Valdivia M.:
Simultaneous resolutions of the identity operator in normed spaces. Collect. Math. 42 (1991), no. 3, 265–284 (1992).
MR 1203185 |
Zbl 0788.47024