[1] Altafini, C.:
Redundant robotic chains on Riemannian submersions. IEEE Transactions on Robotics and Automation 20 (2004), 335-340.
DOI 10.1109/tra.2004.824636
[2] Alekseevsky, D. V., Marchiafava, S.:
Almost complex submanifolds of quaternionic manifolds. Steps in differential geometry Kozma, L. et al. Proc. of the colloquium on differential geometry, Debrecen, 2000, Inst. Math. Inform. Debrecen (2001), 23-38.
MR 1859285 |
Zbl 1037.53029
[5] Bourguignon, J.-P.:
A mathematician's visit to Kaluza-Klein theory. Conf. on Partial Differential Equations and Geometry, Torino, 1988, Rend. Sem. Mat. Univ. Politec. Torino, Special Issue (1989), 143-163.
MR 1086213 |
Zbl 0717.53062
[8] Cortés, V., Mayer, C., Mohaupt, T., Saueressig, F.:
Special geometry of Euclidean supersymmetry I. Vector multiplets. J. High Energy Phys. (electronic) 3 (2004), no. 028, 73 pages.
DOI 10.1088/1126-6708/2004/03/028 |
MR 2061551
[10] Gray, A.:
Pseudo-Riemannian almost product manifolds and submersions. J. Math. Mech. 16 (1967), 715-737.
MR 0205184 |
Zbl 0147.21201
[25] Watson, B.:
$G,G'$-Riemannian submersions and non-linear gauge field equations of general relativity. Global Analysis -- Analysis on Manifolds Teubner-Texte Math. 57, Teubner, Leipzig (1983), 324-349.
MR 0730623 |
Zbl 0525.53052